These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 3365265)

  • 1. Erythrocyte D-glucose transport activity in reconstituted model membranes of different lipid composition.
    Cestaro B; Cervato G; Carandente O; Girardi AM; Pozza G
    Biochem Int; 1988 Feb; 16(2):323-9. PubMed ID: 3365265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstitution of D-glucose transport in vesicles composed of lipids and intrinsic protein (zone 4.5) of the human erythrocyte membrane.
    Kahlenberg A; Zala CA
    J Supramol Struct; 1977; 7(3-4):287-300. PubMed ID: 616483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cholesterol on the reconstituted D-glucose transport system of human erythrocyte membranes.
    Fröman G
    Tokai J Exp Clin Med; 1982; 7 Suppl():131-3. PubMed ID: 6892255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental changes in glucose transport of guinea pig erythrocytes.
    Kondo T; Beutler E
    J Clin Invest; 1980 Jan; 65(1):1-4. PubMed ID: 7350191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution of D-glucose transport catalyzed by a protein fraction from human erythrocytes in sonicated liposomes.
    Kasahara M; Hinkle PC
    Proc Natl Acad Sci U S A; 1976 Feb; 73(2):396-400. PubMed ID: 1061142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of formalin and freezing preservation on lipid and fatty acid composition].
    Uchimura H; Saito M; Mukai A; Hazama H
    No To Shinkei; 1972 Jan; 24(1):83-9. PubMed ID: 5066722
    [No Abstract]   [Full Text] [Related]  

  • 7. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane features and activity of GPI-anchored enzymes: alkaline phosphatase reconstituted in model membranes.
    Sesana S; Re F; Bulbarelli A; Salerno D; Cazzaniga E; Masserini M
    Biochemistry; 2008 May; 47(19):5433-40. PubMed ID: 18416535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of membrane lipid structure on plasma membrane Ca2+ -ATPase activity.
    Tang D; Dean WL; Borchman D; Paterson CA
    Cell Calcium; 2006 Mar; 39(3):209-16. PubMed ID: 16412504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of exogenous lipids incorporated into the membrane of human erythrocytes on its glucose transport activity.
    Fujii T; Tamura A; Fujii H; Miwa I; Okuda J
    Biochem Int; 1986 Jun; 12(6):873-9. PubMed ID: 3741447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The permeability of bilayer lipid membranes on the incorporation of erythrocyte membrane extracts and the identification of the monosaccharide transport proteins.
    Phutrakul S; Jones MN
    Biochim Biophys Acta; 1979 Jan; 550(2):188-200. PubMed ID: 758944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The glucose transport activity of human erythrocyte membranes. Reconstitution in phospholipid liposomes and fractionation by molecular sieve and ion exchange chromatography.
    Fröman G; Acevedo F; Lundahl P; Hjertén S
    Biochim Biophys Acta; 1980 Aug; 600(2):489-501. PubMed ID: 7407124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detergent-mediated reconstitution of membrane proteins.
    Knol J; Sjollema K; Poolman B
    Biochemistry; 1998 Nov; 37(46):16410-5. PubMed ID: 9819233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flippase activity in proteoliposomes reconstituted with Spinacea oleracea endoplasmic reticulum membrane proteins: evidence of biogenic membrane flippase in plants.
    Sahu SK; Gummadi SN
    Biochemistry; 2008 Sep; 47(39):10481-90. PubMed ID: 18767811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The anticoagulant activity of various lipids extracted from beef brain.
    Bourgain RH; Six F
    Arch Int Physiol Biochim; 1973 May; 81(2):331-7. PubMed ID: 4126210
    [No Abstract]   [Full Text] [Related]  

  • 16. The lipid composition of rat CNS axolemma-enriched fractions.
    De Vries GH; Zmachinski CJ
    J Neurochem; 1980 Feb; 34(2):424-30. PubMed ID: 7411154
    [No Abstract]   [Full Text] [Related]  

  • 17. D-glucose permeability of black lipid membranes modified by human erythrocyte membrane fractions.
    Lidgard GP; Jones MN
    J Membr Biol; 1975 Apr; 21(1-2):1-10. PubMed ID: 1238573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Biochemistry of the brain. d. Glycosides of the brain].
    Taketomi T
    Nihon Rinsho; 1985 Feb; 43(2):262-5. PubMed ID: 3889407
    [No Abstract]   [Full Text] [Related]  

  • 19. Asymmetric transport of D-glucose anomers across the human erythrocyte membrane.
    Miwa I; Fujii H; Okuda J
    Biochem Int; 1988 Jan; 16(1):111-7. PubMed ID: 3355568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Variability of biological glucose transport activity in human erythrocytes].
    Feugeas JP; Néel D; Goussault Y; Derappe C
    C R Seances Soc Biol Fil; 1991; 185(4):190-7. PubMed ID: 1836413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.