These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33652712)

  • 1. Experimental Study of Oriented Strand Board Ignition by Radiant Heat Fluxes.
    Tureková I; Marková I; Ivanovičová M; Harangózo J
    Polymers (Basel); 2021 Feb; 13(5):. PubMed ID: 33652712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Study of the Influence of Selected Factors on the Particle Board Ignition by Radiant Heat Flux.
    Tureková I; Ivanovičová M; Harangózo J; Gašpercová S; Marková I
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field tests on human tolerance to (LNG) fire radiant heat exposure, and attenuation effects of clothing and other objects.
    Raj PK
    J Hazard Mater; 2008 Sep; 157(2-3):247-59. PubMed ID: 18291577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Evaluation of Torrefied Wood Using a Cone Calorimeter.
    Rantuch P; Martinka J; Ház A
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34071814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orientation effect on cone calorimeter test results to assess fire hazard of materials.
    Tsai KC
    J Hazard Mater; 2009 Dec; 172(2-3):763-72. PubMed ID: 19665837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full-Scale Experimental Investigation to Quantify Building Component Ignition Vulnerability from Mulch Beds Attacked by Firebrand Showers.
    Manzello SL; Suzuki S; Nii D
    Fire Technol; 2017 Mar; 53(2):535-551. PubMed ID: 28184098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating Coupled Effect of Radiative Heat Flux and Firebrand Showers on Ignition of Fuel Beds.
    Suzuki S; Manzello SL
    Fire Technol; 2020; 57(2):. PubMed ID: 34092802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling piloted ignition of wood and plastics.
    van Blijderveen M; Bramer EA; Brem G
    Waste Manag; 2012 Sep; 32(9):1659-68. PubMed ID: 22595838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Procedure for Laboratory Studies of In Situ Burning : Flammability and Burning Efficiency of Crude Oil.
    van Gelderen L; Jomaas G
    J Vis Exp; 2018 May; (135):. PubMed ID: 29782015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Study of Fire Hazards of Thermal-Insulation Material in Diesel Locomotive: Aluminum-Polyurethane.
    Zhang T; Zhou X; Yang L
    Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of the criteria for people exposure to radiant heat flux from fires.
    Raj PK
    J Hazard Mater; 2008 Nov; 159(1):61-71. PubMed ID: 18035487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical study on ignition time of PMMA exposed to time-decreasing thermal radiation using critical mass flux.
    Zhai C; Zhang S; Yao S; Zhan Q; Zhang S; Wang Y
    Sci Rep; 2019 Aug; 9(1):11958. PubMed ID: 31420592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of Heat Flux to the Fire-Technical and Chemical Properties of Spruce Wood (
    Zachar M; Čabalová I; Kačíková D; Zacharová L
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of Industrial Grade Thermal Insulation at Elevated Temperatures.
    Gunnarshaug A; Metallinou MM; Log T
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33081199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Combined Surface and In-Depth Absorption on Ignition of PMMA.
    Gong J; Chen Y; Li J; Jiang J; Wang Z; Wang J
    Materials (Basel); 2016 Oct; 9(10):. PubMed ID: 28773940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the fire hazards of mine materials using a radiant panel.
    Harteis SP; Litton CD; Thomas RA
    Min Eng; 2016 Jan; 68(1):40-45. PubMed ID: 26877552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile Thermal and Optical Ignition of Silicon Nanoparticles and Micron Particles.
    Huang S; Parimi VS; Deng S; Lingamneni S; Zheng X
    Nano Lett; 2017 Oct; 17(10):5925-5930. PubMed ID: 28873319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Some relevant parameters for assessing fire hazards of combustible mine materials using laboratory scale experiments.
    Litton CD; Perera IE; Harteis SP; Teacoach KA; DeRosa MI; Thomas RA; Smith AC
    Fuel (Lond); 2018 Apr; 218():306-315. PubMed ID: 29599565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ignition of expandable polystyrene foam by a hot particle: an experimental and numerical study.
    Wang S; Chen H; Liu N
    J Hazard Mater; 2015; 283():536-43. PubMed ID: 25464293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and Numerical Study on Effect of Sample Orientation on Auto-Ignition and Piloted Ignition of Poly(methyl methacrylate).
    Peng F; Zhou XD; Zhao K; Wu ZB; Yang LZ
    Materials (Basel); 2015 Jul; 8(7):4004-4021. PubMed ID: 28793421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.