These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33652951)

  • 1. Precipitate Evolution in 22Cr25NiWCuCo(Nb) Austenitic Heat-Resistant Stainless Steel during Heat Treatment at 1200 °C.
    Yang SM; Wu JL; Pan YT; Lin DY
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33652951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grain Size Effect on the Hot Ductility of High-Nitrogen Austenitic Stainless Steel in the Presence of Precipitates.
    Wang Z; Wang Y; Wang C
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29914141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recrystallisation behaviour of a fully austenitic Nb-stabilised stainless steel.
    Barcellini C; Dumbill S; Jimenez-Melero E
    J Microsc; 2019 Apr; 274(1):3-12. PubMed ID: 30561019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precipitation Evolution in the Austenitic Heat-Resistant Steel HR3C upon Creep at 700 °C and 750 °C.
    Xu L; He Y; Kang Y; Jung JS; Shin K
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Service on Microstructure and Mechanical Properties of HR3C Heat-Resistant Austenitic Stainless Steel.
    Golański G; Zieliński A; Sroka M; Słania J
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32183009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ Study of Precipitates' Effect on Grain Deformation Behavior and Mechanical Properties of S31254 Super Austenitic Stainless Steel.
    Ma J; Tan H; Dong N; Gao J; Wang P; Wang Z; Han P
    Materials (Basel); 2024 Jun; 17(11):. PubMed ID: 38893942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Intergranular Corrosion Susceptibility of Metastable Austenitic Cr⁻Mn⁻Ni⁻N⁻Cu High-Strength Stainless Steel under Various Heat Treatments.
    Liu G; Liu Y; Cheng Y; Li J; Jiang Y
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Laves phase in Crofer 22 H stainless steel.
    Hsiao ZW; Kuhn B; Chen D; Singheiser L; Kuo JC; Lin DY
    Micron; 2015 Jul; 74():59-64. PubMed ID: 25974858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Nb Content on Precipitation, Grain Microstructure, Texture and Magnetic Properties of Grain-Oriented Silicon Steel.
    Wang Y; Zhu C; Li G; Liu Y; Liu Y
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33297538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of Precipitate Evolution on Austenite Grain Growth in RAFM Steel.
    Yan B; Liu Y; Wang Z; Liu C; Si Y; Li H; Yu J
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28862680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core-Shell Structure of Intermediate Precipitates in a Nb-Based Z-Phase Strengthened 12% Cr Steel.
    Rashidi M; Andrén HO; Liu F
    Microsc Microanal; 2017 Apr; 23(2):360-365. PubMed ID: 28318479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Impact of Isothermal Treatment on the Microstructural Evolution and the Precipitation Behavior in High Strength Linepipe Steel.
    Tian Y; Wang H; Xu X; Wang Z; Misra RDK; Wang G
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 32023895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Influence of Precipitate Morphology on the Growth of Austenite Grain in Nb-Ti-Al Microalloyed Steels.
    Yuan J; Xiao Y; Min N; Li W; Zhao S
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppress Austenite Grain Coarsening by Nb Alloying in High-Temperature-Pseudo-Carburized Bearing Steel.
    An X; Cao W; Zhang X; Yu J
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unified Solid Solution Product of [Nb][C] in Nb-Microalloyed Steels with Various Carbon Contents.
    Yan Y; Xue Y; Liu K; Yu W; Shi J; Wang M
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data related to the growth of σ-phase precipitates in CrMnFeCoNi high-entropy alloys: Temporal evolutions of precipitate dimensions and concentration profiles at interfaces.
    Laplanche G
    Data Brief; 2020 Dec; 33():106449. PubMed ID: 33163597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interface segregation behavior in thermal aged austenitic precipitation strengthened stainless steel.
    Li H; Song H; Liu W; Xia S; Zhou B; Su C; Ding W
    Ultramicroscopy; 2015 Dec; 159 Pt 2():255-64. PubMed ID: 26142697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precipitation within localised chromium-enriched regions in a Type 316H austenitic stainless steel.
    Warren AD; Griffiths IJ; Flewitt PEJ
    J Mater Sci; 2018; 53(8):6183-6197. PubMed ID: 31983773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atom Probe Tomographic Characterization of Nanoscale Cu-Rich Precipitates in 17-4 Precipitate Hardened Stainless Steel Tempered at Different Temperatures.
    Wang Z; Fang X; Li H; Liu W
    Microsc Microanal; 2017 Apr; 23(2):340-349. PubMed ID: 28300016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructural Characterisation of Austenitic Heat Resistant Sanicro 25 Steel after Steam Oxidation.
    Rutkowski B
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.