These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33653039)

  • 41. Ferroelectricity by Bose-Einstein condensation in a quantum magnet.
    Kimura S; Kakihata K; Sawada Y; Watanabe K; Matsumoto M; Hagiwara M; Tanaka H
    Nat Commun; 2016 Sep; 7():12822. PubMed ID: 27666875
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exact hydrodynamics of a trapped dipolar Bose-Einstein condensate.
    O'Dell DH; Giovanazzi S; Eberlein C
    Phys Rev Lett; 2004 Jun; 92(25 Pt 1):250401. PubMed ID: 15244986
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Anisotropic excitation spectrum of a dipolar quantum Bose gas.
    Bismut G; Laburthe-Tolra B; Maréchal E; Pedri P; Gorceix O; Vernac L
    Phys Rev Lett; 2012 Oct; 109(15):155302. PubMed ID: 23102324
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Relaxation dynamics of a driven two-level system coupled to a Bose-Einstein condensate: application to quantum dot-dipolar exciton gas hybrid systems.
    Kovalev VM; Tse WK
    J Phys Condens Matter; 2017 Nov; 29(46):465301. PubMed ID: 28862151
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamics of collapsing and exploding Bose-Einstein condensates.
    Donley EA; Claussen NR; Cornish SL; Roberts JL; Cornell EA; Wieman CE
    Nature; 2001 Jul; 412(6844):295-9. PubMed ID: 11460153
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Number fluctuations of a dipolar condensate: anisotropy and slow approach to the thermodynamic regime.
    Baillie D; Bisset RN; Ticknor C; Blakie PB
    Phys Rev Lett; 2014 Dec; 113(26):265301. PubMed ID: 25615347
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Matter-wave interferometry with phase fluctuating Bose-Einstein condensates.
    Jo GB; Choi JH; Christensen CA; Lee YR; Pasquini TA; Ketterle W; Pritchard DE
    Phys Rev Lett; 2007 Dec; 99(24):240406. PubMed ID: 18233429
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamical instability of a Bose-Einstein condensate with higher-order interactions in an optical potential through a variational approach.
    Wamba E; Sabari S; Porsezian K; Mohamadou A; Kofané TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052917. PubMed ID: 25353871
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dynamical formation of a strongly correlated dark condensate of dipolar excitons.
    Mazuz-Harpaz Y; Cohen K; Leveson M; West K; Pfeiffer L; Khodas M; Rapaport R
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18328-18333. PubMed ID: 31451654
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Observation of dipole-dipole interaction in a degenerate quantum gas.
    Stuhler J; Griesmaier A; Koch T; Fattori M; Pfau T; Giovanazzi S; Pedri P; Santos L
    Phys Rev Lett; 2005 Oct; 95(15):150406. PubMed ID: 16241705
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Anomalous hydrodynamics and normal fluids in rapidly rotating Bose-Einstein condensates.
    Bourne A; Wilkin NK; Gunn JM
    Phys Rev Lett; 2006 Jun; 96(24):240401. PubMed ID: 16907220
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Energy relaxation of quantum dot hot electrons in hybrid quantum dot-Bose-Einstein condensate system.
    Mahmoodian MM; Kovalev VM; Chaplik AV
    J Phys Condens Matter; 2021 Aug; 33(43):. PubMed ID: 34325409
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantum fluctuations and collective oscillations of a Bose-Einstein condensate in a 2D optical lattice.
    Orso G; Menotti C; Stringari S
    Phys Rev Lett; 2006 Nov; 97(19):190408. PubMed ID: 17155603
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Observation of Roton Mode Population in a Dipolar Quantum Gas.
    Chomaz L; van Bijnen RMW; Petter D; Faraoni G; Baier S; Becher JH; Mark MJ; Wächtler F; Santos L; Ferlaino F
    Nat Phys; 2018 May; 14(5):442-446. PubMed ID: 29861780
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phonon instability with respect to soliton formation in two-dimensional dipolar Bose-Einstein condensates.
    Nath R; Pedri P; Santos L
    Phys Rev Lett; 2009 Feb; 102(5):050401. PubMed ID: 19257488
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Observation of Momentum Space Josephson Effects in Weakly Coupled Bose-Einstein Condensates.
    Mukhopadhyay A; Luo XW; Schimelfenig C; Ome MKH; Mossman S; Zhang C; Engels P
    Phys Rev Lett; 2024 Jun; 132(23):233403. PubMed ID: 38905684
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The properties of bio-energy transport and influence of structure nonuniformity and temperature of systems on energy transport along polypeptide chains.
    Pang XF
    Prog Biophys Mol Biol; 2012 Jan; 108(1-2):1-46. PubMed ID: 21951575
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Four wave mixing in the scattering of Bose-Einstein condensates.
    Trippenbach M; Band Y; Julienne P
    Opt Express; 1998 Dec; 3(13):530-7. PubMed ID: 19384404
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hybrid Matter-Wave-Microwave Solitons Produced by the Local-Field Effect.
    Qin J; Dong G; Malomed BA
    Phys Rev Lett; 2015 Jul; 115(2):023901. PubMed ID: 26207469
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Emergence of chiral magnetism in spinor Bose-Einstein condensates with Rashba coupling.
    Xu XQ; Han JH
    Phys Rev Lett; 2012 May; 108(18):185301. PubMed ID: 22681085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.