These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 33653045)

  • 1. Rogue waves for the fourth-order nonlinear Schrödinger equation on the periodic background.
    Zhang HQ; Chen F
    Chaos; 2021 Feb; 31(2):023129. PubMed ID: 33653045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rogue periodic waves of the focusing nonlinear Schrödinger equation.
    Chen J; Pelinovsky DE
    Proc Math Phys Eng Sci; 2018 Feb; 474(2210):20170814. PubMed ID: 29507521
    [No Abstract]   [Full Text] [Related]  

  • 3. Rogue waves on the background of periodic standing waves in the derivative nonlinear Schrödinger equation.
    Chen J; Pelinovsky DE
    Phys Rev E; 2021 Jun; 103(6-1):062206. PubMed ID: 34271656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rogue waves in the two dimensional nonlocal nonlinear Schrödinger equation and nonlocal Klein-Gordon equation.
    Liu W; Zhang J; Li X
    PLoS One; 2018; 13(2):e0192281. PubMed ID: 29432495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Higher-order matrix nonlinear Schrödinger equation with the negative coherent coupling: binary Darboux transformation, vector solitons, breathers and rogue waves.
    Du Z; Nie Y; Guo Q
    Opt Express; 2023 Dec; 31(25):42507-42523. PubMed ID: 38087623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elliptic-rogue waves and modulational instability in nonlinear soliton equations.
    Ling L; Sun X
    Phys Rev E; 2024 Jun; 109(6-1):064209. PubMed ID: 39020908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Several reverse-time integrable nonlocal nonlinear equations: Rogue-wave solutions.
    Yang B; Chen Y
    Chaos; 2018 May; 28(5):053104. PubMed ID: 29857682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells-Fokas equation in inhomogeneous fibers.
    Wang L; Zhu YJ; Qi FH; Li M; Guo R
    Chaos; 2015 Jun; 25(6):063111. PubMed ID: 26117105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of optical activity on rogue waves propagating in chiral optical fibers.
    Temgoua DD; Kofane TC
    Phys Rev E; 2016 Jun; 93(6):062223. PubMed ID: 27415269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalized perturbation (n, M)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation.
    Wen XY; Yang Y; Yan Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012917. PubMed ID: 26274257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vector semirational rogue waves and modulation instability for the coupled higher-order nonlinear Schrödinger equations in the birefringent optical fibers.
    Sun WR; Liu DY; Xie XY
    Chaos; 2017 Apr; 27(4):043114. PubMed ID: 28456173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rogue waves, rational solitons, and modulational instability in an integrable fifth-order nonlinear Schrödinger equation.
    Yang Y; Yan Z; Malomed BA
    Chaos; 2015 Oct; 25(10):103112. PubMed ID: 26520078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Akhmediev breathers, Ma solitons, and general breathers from rogue waves: a case study in the Manakov system.
    Vishnu Priya N; Senthilvelan M; Lakshmanan M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022918. PubMed ID: 24032912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation.
    He J; Wang L; Li L; Porsezian K; Erdélyi R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062917. PubMed ID: 25019861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breather transition dynamics, Peregrine combs and walls, and modulation instability in a variable-coefficient nonlinear Schrödinger equation with higher-order effects.
    Wang L; Zhang JH; Liu C; Li M; Qi FH
    Phys Rev E; 2016 Jun; 93(6):062217. PubMed ID: 27415265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions.
    Guo B; Ling L; Liu QP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026607. PubMed ID: 22463349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between solitons and other nonlinear Schrödinger waves.
    Cheng XP; Lou SY; Chen CL; Tang XY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043202. PubMed ID: 24827358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation.
    Wang LH; Porsezian K; He JS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053202. PubMed ID: 23767650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonparaxial rogue waves in optical Kerr media.
    Temgoua DD; Kofane TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):063201. PubMed ID: 26172812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical and experimental evidence of non-symmetric doubly localized rogue waves.
    He J; Guo L; Zhang Y; Chabchoub A
    Proc Math Phys Eng Sci; 2014 Nov; 470(2171):20140318. PubMed ID: 25383023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.