BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33653343)

  • 1. Co-culture of Vel1-overexpressed Trichoderma asperellum and Bacillus amyloliquefaciens: An eco-friendly strategy to hydrolyze the lignocellulose biomass in soil to enrich the soil fertility, plant growth and disease resistance.
    Karuppiah V; Zhixiang L; Liu H; Vallikkannu M; Chen J
    Microb Cell Fact; 2021 Mar; 20(1):57. PubMed ID: 33653343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-cultivation of T. asperellum GDFS1009 and B. amyloliquefaciens 1841: Strategy to regulate the production of ligno-cellulolytic enzymes for the lignocellulose biomass degradation.
    Karuppiah V; Zhixiang L; Liu H; Murugappan V; Kumaran S; Perianaika Anahas AM; Chen J
    J Environ Manage; 2022 Jan; 301():113833. PubMed ID: 34592667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous and sequential based co-fermentations of Trichoderma asperellum GDFS1009 and Bacillus amyloliquefaciens 1841: a strategy to enhance the gene expression and metabolites to improve the bio-control and plant growth promoting activity.
    Karuppiah V; Vallikkannu M; Li T; Chen J
    Microb Cell Fact; 2019 Oct; 18(1):185. PubMed ID: 31665025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-culture of Bacillus amyloliquefaciens ACCC11060 and Trichoderma asperellum GDFS1009 enhanced pathogen-inhibition and amino acid yield.
    Wu Q; Ni M; Dou K; Tang J; Ren J; Yu C; Chen J
    Microb Cell Fact; 2018 Oct; 17(1):155. PubMed ID: 30285749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-cultivation of
    Karuppiah V; Sun J; Li T; Vallikkannu M; Chen J
    Front Microbiol; 2019; 10():1068. PubMed ID: 31156586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of cellulase secretion and Cre1-mediated carbon source repression in the potential lignocellulose-degrading strain Trichoderma asperellum T-1.
    Wang Q; Lin H; Shen Q; Fan X; Bai N; Zhao Y
    PLoS One; 2015; 10(3):e0119237. PubMed ID: 25741694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Degradation of lignocellulose in the corn straw by Bacillus amyloliquefaciens MN-8].
    Li HY; Li SN; Wang SX; Wang Q; Xue YY; Zhu BC
    Ying Yong Sheng Tai Xue Bao; 2015 May; 26(5):1404-10. PubMed ID: 26571658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme production by the mixed fungal culture with nano-shear pretreated biomass and lignocellulose hydrolysis.
    Lu J; Weerasiri RR; Liu Y; Wang W; Ji S; Lee I
    Biotechnol Bioeng; 2013 Aug; 110(8):2123-30. PubMed ID: 23456729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Cost Cellulase-Hemicellulase Mixture Secreted by
    Zhang Y; Yang J; Luo L; Wang E; Wang R; Liu L; Liu J; Yuan H
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31936000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacillus amyloliquefaciens Spore Production Under Solid-State Fermentation of Lignocellulosic Residues.
    Berikashvili V; Sokhadze K; Kachlishvili E; Elisashvili V; Chikindas ML
    Probiotics Antimicrob Proteins; 2018 Dec; 10(4):755-761. PubMed ID: 29249066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the Global Fitness Regulator Genes on the Osmotic Tolerance Ability and Salinity Hazard Alleviation of
    Karuppiah V; Zhang X; Lu Z; Hao D; Chen J
    J Fungi (Basel); 2022 Nov; 8(11):. PubMed ID: 36354943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Trichoderma reesei Rut-C30 with the overexpression of egl1 at the ace1 locus to relieve repression on cellulase production and to adjust the ratio of cellulolytic enzymes for more efficient hydrolysis of lignocellulosic biomass.
    Meng QS; Liu CG; Zhao XQ; Bai FW
    J Biotechnol; 2018 Nov; 285():56-63. PubMed ID: 30194052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of physical and chemical properties of oil palm empty fruit bunch, decanter cake and sago pith residue on cellulases production by Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2.
    Zanirun Z; Bahrin EK; Lai-Yee P; Hassan MA; Abd-Aziz S
    Appl Biochem Biotechnol; 2014 Jan; 172(1):423-35. PubMed ID: 24085387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of a lignocellulolytic enzyme system for simultaneous bio-delignification and saccharification of corn stover employing co-culture of fungi.
    Ma K; Ruan Z
    Bioresour Technol; 2015 Jan; 175():586-93. PubMed ID: 25459871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The adsorption and enzyme activity profiles of specific Trichoderma reesei cellulase/xylanase components when hydrolyzing steam pretreated corn stover.
    Pribowo A; Arantes V; Saddler JN
    Enzyme Microb Technol; 2012 Mar; 50(3):195-203. PubMed ID: 22305175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alleviation of the effects of saline-alkaline stress on maize seedlings by regulation of active oxygen metabolism by Trichoderma asperellum.
    Fu J; Liu Z; Li Z; Wang Y; Yang K
    PLoS One; 2017; 12(6):e0179617. PubMed ID: 28654652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1.
    Zhang F; Zhao X; Bai F
    Bioresour Technol; 2018 Jan; 247():676-683. PubMed ID: 30060399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocontrol Potential of
    Ma Y; Li Y; Yang S; Li Y; Zhu Z
    J Fungi (Basel); 2023 Sep; 9(9):. PubMed ID: 37755043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking hydrolysis performance to Trichoderma reesei cellulolytic enzyme profile.
    Lehmann L; Rønnest NP; Jørgensen CI; Olsson L; Stocks SM; Jørgensen HS; Hobley T
    Biotechnol Bioeng; 2016 May; 113(5):1001-10. PubMed ID: 26524197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic Effect of
    Batool R; Umer MJ; Wang Y; He K; Zhang T; Bai S; Zhi Y; Chen J; Wang Z
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33153030
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.