These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 33653570)

  • 1. Modeling crash severity by considering risk indicators of driver and roadway: A Bayesian network approach.
    Song Y; Kou S; Wang C
    J Safety Res; 2021 Feb; 76():64-72. PubMed ID: 33653570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Driver injury severity outcome analysis in rural interstate highway crashes: a two-level Bayesian logistic regression interpretation.
    Chen C; Zhang G; Liu XC; Ci Y; Huang H; Ma J; Chen Y; Guan H
    Accid Anal Prev; 2016 Dec; 97():69-78. PubMed ID: 27591415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using hierarchical Bayesian binary probit models to analyze crash injury severity on high speed facilities with real-time traffic data.
    Yu R; Abdel-Aty M
    Accid Anal Prev; 2014 Jan; 62():161-7. PubMed ID: 24172082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multinomial logit model-Bayesian network hybrid approach for driver injury severity analyses in rear-end crashes.
    Chen C; Zhang G; Tarefder R; Ma J; Wei H; Guan H
    Accid Anal Prev; 2015 Jul; 80():76-88. PubMed ID: 25888994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examining driver injury severity outcomes in rural non-interstate roadway crashes using a hierarchical ordered logit model.
    Chen C; Zhang G; Huang H; Wang J; Tarefder RA
    Accid Anal Prev; 2016 Nov; 96():79-87. PubMed ID: 27505099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Road safety from the perspective of driver gender and age as related to the injury crash frequency and road scenario.
    Russo F; Biancardo SA; Dell'Acqua G
    Traffic Inj Prev; 2014; 15(1):25-33. PubMed ID: 24279963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Risk factors associated with truck-involved fatal crash severity: Analyzing their impact for different groups of truck drivers.
    Yuan Y; Yang M; Guo Y; Rasouli S; Gan Z; Ren Y
    J Safety Res; 2021 Feb; 76():154-165. PubMed ID: 33653546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating behavioral variables into crash count prediction by severity: A multivariate multiple risk source approach.
    Rahman Shaon MR; Qin X; Afghari AP; Washington S; Haque MM
    Accid Anal Prev; 2019 Aug; 129():277-288. PubMed ID: 31177039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling single-vehicle run-off-road crash severity in rural areas: Accounting for unobserved heterogeneity and age difference.
    Gong L; Fan WD
    Accid Anal Prev; 2017 Apr; 101():124-134. PubMed ID: 28226253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of traffic enforcement cameras on macro-level traffic safety: A spatial modeling analysis considering interactions with roadway and Land use characteristics.
    Wang C; Xu C; Fan P
    Accid Anal Prev; 2020 Sep; 144():105659. PubMed ID: 32590241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examining driver injury severity in intersection-related crashes using cluster analysis and hierarchical Bayesian models.
    Li Z; Chen C; Ci Y; Zhang G; Wu Q; Liu C; Qian ZS
    Accid Anal Prev; 2018 Nov; 120():139-151. PubMed ID: 30121004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of Single Vehicle Crashes with a Teen Driver in South Carolina, 2005-2008.
    Shults RA; Bergen G; Smith TJ; Cook L; Kindelberger J; West B
    Accid Anal Prev; 2019 Jan; 122():325-331. PubMed ID: 28947072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ordered logistic models of influencing factors on crash injury severity of single and multiple-vehicle downgrade crashes: A case study in Wyoming.
    Rezapour M; Moomen M; Ksaibati K
    J Safety Res; 2019 Feb; 68():107-118. PubMed ID: 30876502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wrong-way driving crashes: A random-parameters ordered probit analysis of injury severity.
    Jalayer M; Shabanpour R; Pour-Rouholamin M; Golshani N; Zhou H
    Accid Anal Prev; 2018 Aug; 117():128-135. PubMed ID: 29698866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-world crash configurations and traffic violations among newly licensed young drivers with different route familiarity levels.
    Xue G; Liu L
    Traffic Inj Prev; 2024; 25(5):673-679. PubMed ID: 38656921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multivariate copula temporal modeling of intersection crash consequence metrics: A joint estimation of injury severity, crash type, vehicle damage and driver error.
    Wang K; Bhowmik T; Yasmin S; Zhao S; Eluru N; Jackson E
    Accid Anal Prev; 2019 Apr; 125():188-197. PubMed ID: 30771588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Severity of driver injury and vehicle damage in traffic crashes at intersections: a Bayesian hierarchical analysis.
    Huang H; Chin HC; Haque MM
    Accid Anal Prev; 2008 Jan; 40(1):45-54. PubMed ID: 18215531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gender differences of young drivers on injury severity outcome of highway crashes.
    Amarasingha N; Dissanayake S
    J Safety Res; 2014 Jun; 49():113-20. PubMed ID: 24913475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overloading among crash-involved vehicles in China: identification of factors associated with overloading and crash severity.
    Zhang G; Li Y; King MJ; Zhong Q
    Inj Prev; 2019 Feb; 25(1):36-46. PubMed ID: 29563142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A data-driven Bayesian network for probabilistic crash risk assessment of individual driver with traffic violation and crash records.
    Joo YJ; Kho SY; Kim DK; Park HC
    Accid Anal Prev; 2022 Oct; 176():106790. PubMed ID: 35933893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.