These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

30 related articles for article (PubMed ID: 3365365)

  • 1. Activation of D-tyrosine by Bacillus stearothermophilus tyrosyl-tRNA synthetase: 1. Pre-steady-state kinetic analysis reveals the mechanistic basis for the recognition of D-tyrosine.
    Sheoran A; Sharma G; First EA
    J Biol Chem; 2008 May; 283(19):12960-70. PubMed ID: 18319247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An asymmetric structure of bacterial TrpRS supports the half-of-the-sites catalytic mechanism and facilitates antimicrobial screening.
    Xiang M; Xia K; Chen B; Luo Z; Yu Y; Jiang L; Zhou H
    Nucleic Acids Res; 2023 May; 51(9):4637-4649. PubMed ID: 37070195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A viral RNA hijacks host machinery using dynamic conformational changes of a tRNA-like structure.
    Bonilla SL; Sherlock ME; MacFadden A; Kieft JS
    Science; 2021 Nov; 374(6570):955-960. PubMed ID: 34793227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural asymmetry of the terminal catalytic complex in selenocysteine synthesis.
    French RL; Gupta N; Copeland PR; Simonović M
    J Biol Chem; 2014 Oct; 289(42):28783-94. PubMed ID: 25190812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-TROSY-based backbone and ILV-methyl resonance assignments of a 319-residue homodimer from a single protein sample.
    Krejcirikova A; Tugarinov V
    J Biomol NMR; 2012 Oct; 54(2):135-43. PubMed ID: 22960997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR Structure of the C-terminal domain of a tyrosyl-tRNA synthetase that functions in group I intron splicing.
    Paukstelis PJ; Chari N; Lambowitz AM; Hoffman D
    Biochemistry; 2011 May; 50(18):3816-26. PubMed ID: 21438536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The two active sites of Thermotoga maritima CheA dimers bind ATP with dramatically different affinities.
    Eaton AK; Stewart RC
    Biochemistry; 2009 Jul; 48(27):6412-22. PubMed ID: 19505148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetric amino acid activation by class II histidyl-tRNA synthetase from Escherichia coli.
    Guth E; Farris M; Bovee M; Francklyn CS
    J Biol Chem; 2009 Jul; 284(31):20753-62. PubMed ID: 19487703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The homotetrameric phosphoseryl-tRNA synthetase from Methanosarcina mazei exhibits half-of-the-sites activity.
    Hauenstein SI; Hou YM; Perona JJ
    J Biol Chem; 2008 Aug; 283(32):21997-2006. PubMed ID: 18559342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic mechanism of the tryptophan activation reaction revealed by crystal structures of human tryptophanyl-tRNA synthetase in different enzymatic states.
    Shen N; Zhou M; Yang B; Yu Y; Dong X; Ding J
    Nucleic Acids Res; 2008 Mar; 36(4):1288-99. PubMed ID: 18180246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional asymmetry in the lysyl-tRNA synthetase explored by molecular dynamics, free energy calculations and experiment.
    Hughes SJ; Tanner JA; Hindley AD; Miller AD; Gould IR
    BMC Struct Biol; 2003 Jun; 3():5. PubMed ID: 12787471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Class I tyrosyl-tRNA synthetase has a class II mode of cognate tRNA recognition.
    Yaremchuk A; Kriklivyi I; Tukalo M; Cusack S
    EMBO J; 2002 Jul; 21(14):3829-40. PubMed ID: 12110594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2.9 A crystal structure of ligand-free tryptophanyl-tRNA synthetase: domain movements fragment the adenine nucleotide binding site.
    Ilyin VA; Temple B; Hu M; Li G; Yin Y; Vachette P; Carter CW
    Protein Sci; 2000 Feb; 9(2):218-31. PubMed ID: 10716174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seryl-tRNA synthetase from Escherichia coli: functional evidence for cross-dimer tRNA binding during aminoacylation.
    Vincent C; Borel F; Willison JC; Leberman R; Härtlein M
    Nucleic Acids Res; 1995 Apr; 23(7):1113-8. PubMed ID: 7537870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetry of tyrosyl-tRNA synthetase in solution.
    Ward WH; Fersht AR
    Biochemistry; 1988 Feb; 27(3):1041-9. PubMed ID: 3365365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tyrosyl-tRNA synthetase acts as an asymmetric dimer in charging tRNA. A rationale for half-of-the-sites activity.
    Ward WH; Fersht AR
    Biochemistry; 1988 Jul; 27(15):5525-30. PubMed ID: 3179266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible dissociation of dimeric tyrosyl-tRNA synthetase by mutagenesis at the subunit interface.
    Jones DH; McMillan AJ; Fersht AR; Winter G
    Biochemistry; 1985 Oct; 24(21):5852-7. PubMed ID: 4084496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aminoacyl-tRNA synthetases from Bacillus stearothermophilus. Asymmetry of substrate binding to tyrosyl-tRNA synthetase.
    Bosshard HR; Koch LE; Hartley BS
    Eur J Biochem; 1975 May; 53(2):493-8. PubMed ID: 1140198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein engineering of homodimeric tyrosyl-tRNA synthetase to produce active heterodimers.
    Ward WH; Jones DH; Fersht AR
    J Biol Chem; 1986 Jul; 261(21):9576-8. PubMed ID: 3733687
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.