These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 3365385)
1. Interaction of diphtheria toxin with model membranes. Chung LA; London E Biochemistry; 1988 Feb; 27(4):1245-53. PubMed ID: 3365385 [TBL] [Abstract][Full Text] [Related]
2. pH-dependent bilayer destabilization and fusion of phospholipidic large unilamellar vesicles induced by diphtheria toxin and its fragments A and B. Defrise-Quertain F; Cabiaux V; Vandenbranden M; Wattiez R; Falmagne P; Ruysschaert JM Biochemistry; 1989 Apr; 28(8):3406-13. PubMed ID: 2742843 [TBL] [Abstract][Full Text] [Related]
3. Lipid interaction of Pseudomonas aeruginosa exotoxin A. Acid-triggered permeabilization and aggregation of lipid vesicles. Menestrina G; Pederzolli C; Forti S; Gambale F Biophys J; 1991 Dec; 60(6):1388-400. PubMed ID: 1723312 [TBL] [Abstract][Full Text] [Related]
4. Conformation and model membrane interactions of diphtheria toxin fragment A. Zhao JM; London E J Biol Chem; 1988 Oct; 263(30):15369-77. PubMed ID: 3170586 [TBL] [Abstract][Full Text] [Related]
5. Interaction of tetanus toxin with lipid vesicles. Effects of pH, surface charge, and transmembrane potential on the kinetics of channel formation. Menestrina G; Forti S; Gambale F Biophys J; 1989 Mar; 55(3):393-405. PubMed ID: 2467697 [TBL] [Abstract][Full Text] [Related]
6. Characterization of diphtheria toxin-induced lesions in liposomal membranes. An evaluation of the relationship between toxin insertion and "channel" formation. Jiang GS; Solow R; Hu VW J Biol Chem; 1989 Aug; 264(23):13424-9. PubMed ID: 2474531 [TBL] [Abstract][Full Text] [Related]
7. Bovine brain phosphatidylinositol transfer protein. Effects of pH, ionic strength and lipid composition on transfer activity. Yoshimura T; Helmkamp GM Biochim Biophys Acta; 1984 May; 793(3):463-70. PubMed ID: 6712981 [TBL] [Abstract][Full Text] [Related]
8. Insertion of diphtheria toxin in lipid bilayers studied by spin label ESR. Montich GG; Montecucco C; Papini E; Marsh D Biochemistry; 1995 Sep; 34(36):11561-7. PubMed ID: 7547887 [TBL] [Abstract][Full Text] [Related]
9. Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus. Valcarcel CA; Dalla Serra M; Potrich C; Bernhart I; Tejuca M; Martinez D; Pazos F; Lanio ME; Menestrina G Biophys J; 2001 Jun; 80(6):2761-74. PubMed ID: 11371451 [TBL] [Abstract][Full Text] [Related]
10. Aggregation and fusion of lipid vesicles induced by diphtheria toxin at low pH: possible involvement of the P site and the NAD+ binding site. Cabiaux V; Vandenbranden M; Falmagne P; Ruysschaert JM Biosci Rep; 1985 Mar; 5(3):243-50. PubMed ID: 4016224 [TBL] [Abstract][Full Text] [Related]
11. Lipid interaction of diphtheria toxin and mutants with altered fragment B. 1. Liposome aggregation and fusion. Papini E; Colonna R; Cusinato F; Montecucco C; Tomasi M; Rappuoli R Eur J Biochem; 1987 Dec; 169(3):629-35. PubMed ID: 3691511 [TBL] [Abstract][Full Text] [Related]
12. Kinetic intermediate reveals staggered pH-dependent transitions along the membrane insertion pathway of the diphtheria toxin T-domain. Kyrychenko A; Posokhov YO; Rodnin MV; Ladokhin AS Biochemistry; 2009 Aug; 48(32):7584-94. PubMed ID: 19588969 [TBL] [Abstract][Full Text] [Related]
13. Diphtheria toxin induces fusion of small unilamellar vesicles at low pH. Cabiaux V; Vandenbranden M; Falmagne P; Ruysschaert JM Biochim Biophys Acta; 1984 Aug; 775(1):31-6. PubMed ID: 6466658 [TBL] [Abstract][Full Text] [Related]
14. Membrane translocation assay based on proteolytic cleavage: application to diphtheria toxin T domain. Rodnin MV; Ladokhin AS Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):35-40. PubMed ID: 25291602 [TBL] [Abstract][Full Text] [Related]
15. Interactions of diphtheria toxin with lipid vesicles: determinants of ion channel formation. Shiver JW; Donovan JJ Biochim Biophys Acta; 1987 Sep; 903(1):48-55. PubMed ID: 2443169 [TBL] [Abstract][Full Text] [Related]
16. Binding of diphtheria toxin to phospholipids in liposomes. Alving CR; Iglewski BH; Urban KA; Moss J; Richards RL; Sadoff JC Proc Natl Acad Sci U S A; 1980 Apr; 77(4):1986-90. PubMed ID: 6929533 [TBL] [Abstract][Full Text] [Related]
17. Use of Trp mutations to evaluate the conformational behavior and membrane insertion of A and B chains in whole diphtheria toxin. Wang Y; Kachel K; Pablo L; London E Biochemistry; 1997 Dec; 36(51):16300-8. PubMed ID: 9405065 [TBL] [Abstract][Full Text] [Related]
18. Requirements for the translocation of diphtheria toxin fragment A across lipid membranes. Donovan JJ; Simon MI; Montal M J Biol Chem; 1985 Jul; 260(15):8817-23. PubMed ID: 4019456 [TBL] [Abstract][Full Text] [Related]
19. Unusual electrostatic effects on binding of C1q to anionic liposomes: role of anionic phospholipid domains and their line tension. Bradley AJ; Maurer-Spurej E; Brooks DE; Devine DV Biochemistry; 1999 Jun; 38(25):8112-23. PubMed ID: 10387057 [TBL] [Abstract][Full Text] [Related]
20. Effect of pH on the conformation of diphtheria toxin and its implications for membrane penetration. Blewitt MG; Chung LA; London E Biochemistry; 1985 Sep; 24(20):5458-64. PubMed ID: 4074708 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]