These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 33653887)
21. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system. Chung K; Okabe S Appl Microbiol Biotechnol; 2009 Jul; 83(5):965-77. PubMed ID: 19404637 [TBL] [Abstract][Full Text] [Related]
22. Convergent development of anodic bacterial communities in microbial fuel cells. Yates MD; Kiely PD; Call DF; Rismani-Yazdi H; Bibby K; Peccia J; Regan JM; Logan BE ISME J; 2012 Nov; 6(11):2002-13. PubMed ID: 22572637 [TBL] [Abstract][Full Text] [Related]
23. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Jung S; Regan JM Appl Microbiol Biotechnol; 2007 Nov; 77(2):393-402. PubMed ID: 17786426 [TBL] [Abstract][Full Text] [Related]
24. Anode-biofilm electron transfer behavior and wastewater treatment under different operational modes of bioelectrochemical system. Wu B; Feng C; Huang L; Lv Z; Xie D; Wei C Bioresour Technol; 2014 Apr; 157():305-9. PubMed ID: 24584100 [TBL] [Abstract][Full Text] [Related]
25. Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox) Biofilms from Digestate in Microbial Fuel Cells. Di Domenico EG; Petroni G; Mancini D; Geri A; Di Palma L; Ascenzioni F Biomed Res Int; 2015; 2015():351014. PubMed ID: 26273609 [TBL] [Abstract][Full Text] [Related]
26. Electroactive biofilms on surface functionalized anodes: The anode respiring behavior of a novel electroactive bacterium, Desulfuromonas acetexigens. Katuri KP; Kamireddy S; Kavanagh P; Muhammad A; Conghaile PÓ; Kumar A; Saikaly PE; Leech D Water Res; 2020 Oct; 185():116284. PubMed ID: 32818731 [TBL] [Abstract][Full Text] [Related]
27. Three-dimensional electrodes enhance electricity generation and nitrogen removal of microbial fuel cells. Dong J; Wu Y; Wang C; Lu H; Li Y Bioprocess Biosyst Eng; 2020 Dec; 43(12):2165-2174. PubMed ID: 32642906 [TBL] [Abstract][Full Text] [Related]
28. Optimization of microbial fuel cell performance application to high sulfide industrial wastewater treatment by modulating microbial function. Sriwichai N; Sangcharoen R; Saithong T; Simpson D; Goryanin I; Boonapatcharoen N; Kalapanulak S; Panichnumsin P PLoS One; 2024; 19(6):e0305673. PubMed ID: 38889113 [TBL] [Abstract][Full Text] [Related]
30. Bacterial communities adapted to higher external resistance can reduce the onset potential of anode in microbial fuel cells. Suzuki K; Kato Y; Yui A; Yamamoto S; Ando S; Rubaba O; Tashiro Y; Futamata H J Biosci Bioeng; 2018 May; 125(5):565-571. PubMed ID: 29373307 [TBL] [Abstract][Full Text] [Related]
31. Mixed sulfate-reducing bacteria-enriched microbial fuel cells for the treatment of wastewater containing copper. Miran W; Jang J; Nawaz M; Shahzad A; Jeong SE; Jeon CO; Lee DS Chemosphere; 2017 Dec; 189():134-142. PubMed ID: 28934653 [TBL] [Abstract][Full Text] [Related]
32. Adaptation of microbial community of the anode biofilm in microbial fuel cells to temperature. Mei X; Xing D; Yang Y; Liu Q; Zhou H; Guo C; Ren N Bioelectrochemistry; 2017 Oct; 117():29-33. PubMed ID: 28575837 [TBL] [Abstract][Full Text] [Related]
33. Fungus-sourced filament-array anode facilitates Geobacter enrichment and promotes anodic bio-capacitance improvement for efficient power generation in microbial fuel cells. Tian Y; Li C; Liang D; Xie T; He W; Li D; Feng Y Sci Total Environ; 2022 Sep; 838(Pt 1):155926. PubMed ID: 35588840 [TBL] [Abstract][Full Text] [Related]
34. Response of the microbial community structure of biofilms to ferric iron in microbial fuel cells. Liu Q; Yang Y; Mei X; Liu B; Chen C; Xing D Sci Total Environ; 2018 Aug; 631-632():695-701. PubMed ID: 29539598 [TBL] [Abstract][Full Text] [Related]
35. Phenol-degrading anode biofilm with high coulombic efficiency in graphite electrodes microbial fuel cell. Zhang D; Li Z; Zhang C; Zhou X; Xiao Z; Awata T; Katayama A J Biosci Bioeng; 2017 Mar; 123(3):364-369. PubMed ID: 27979700 [TBL] [Abstract][Full Text] [Related]
36. Applications of Nanomaterials in Microbial Fuel Cells: A Review. Abd-Elrahman NK; Al-Harbi N; Basfer NM; Al-Hadeethi Y; Umar A; Akbar S Molecules; 2022 Nov; 27(21):. PubMed ID: 36364309 [TBL] [Abstract][Full Text] [Related]
37. Inhibition of AHL-mediated quorum sensing to control biofilm thickness in microbial fuel cell by using Rhodococcus sp. BH4. Taşkan B; Taşkan E Chemosphere; 2021 Dec; 285():131538. PubMed ID: 34273699 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of microbial fuel cells for electricity generation from oil-contaminated wastewater. Hamamoto K; Miyahara M; Kouzuma A; Matsumoto A; Yoda M; Ishiguro T; Watanabe K J Biosci Bioeng; 2016 Nov; 122(5):589-593. PubMed ID: 27143587 [TBL] [Abstract][Full Text] [Related]
39. Development of anode zone using dual-anode system to reduce organic matter crossover in membraneless microbial fuel cells. Kim J; Kim B; An J; Lee YS; Chang IS Bioresour Technol; 2016 Aug; 213():140-145. PubMed ID: 26972026 [TBL] [Abstract][Full Text] [Related]
40. Influence of shear stress on electroactive biofilm characteristics and performance in microbial fuel cells. Godain A; Vogel TM; Fongarland P; Haddour N Biosens Bioelectron; 2024 Jan; 244():115806. PubMed ID: 37944355 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]