These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 33653957)

  • 1. Ligand effects on phase separation of multivalent macromolecules.
    Ruff KM; Dar F; Pappu RV
    Proc Natl Acad Sci U S A; 2021 Mar; 118(10):. PubMed ID: 33653957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyphasic linkage and the impact of ligand binding on the regulation of biomolecular condensates.
    Ruff KM; Dar F; Pappu RV
    Biophys Rev (Melville); 2021 Jun; 2(2):021302. PubMed ID: 34179888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical Principles Underlying the Complex Biology of Intracellular Phase Transitions.
    Choi JM; Holehouse AS; Pappu RV
    Annu Rev Biophys; 2020 May; 49():107-133. PubMed ID: 32004090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Introduction to the Stickers-and-Spacers Framework as Applied to Biomolecular Condensates.
    Ginell GM; Holehouse AS
    Methods Mol Biol; 2023; 2563():95-116. PubMed ID: 36227469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyubiquitin ligand-induced phase transitions are optimized by spacing between ubiquitin units.
    Galagedera SKK; Dao TP; Enos SE; Chaudhuri A; Schmit JD; Castañeda CA
    Proc Natl Acad Sci U S A; 2023 Oct; 120(42):e2306638120. PubMed ID: 37824531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LASSI: A lattice model for simulating phase transitions of multivalent proteins.
    Choi JM; Dar F; Pappu RV
    PLoS Comput Biol; 2019 Oct; 15(10):e1007028. PubMed ID: 31634364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Condensates formed by prion-like low-complexity domains have small-world network structures and interfaces defined by expanded conformations.
    Farag M; Cohen SR; Borcherds WM; Bremer A; Mittag T; Pappu RV
    Nat Commun; 2022 Dec; 13(1):7722. PubMed ID: 36513655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase separation in biology and disease-a symposium report.
    Cable J; Brangwynne C; Seydoux G; Cowburn D; Pappu RV; Castañeda CA; Berchowitz LE; Chen Z; Jonikas M; Dernburg A; Mittag T; Fawzi NL
    Ann N Y Acad Sci; 2019 Sep; 1452(1):3-11. PubMed ID: 31199001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase Separation in Mixtures of Prion-Like Low Complexity Domains is Driven by the Interplay of Homotypic and Heterotypic Interactions.
    Farag M; Borcherds WM; Bremer A; Mittag T; Pappu RV
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoding optimal ligand design for multicomponent condensates.
    Galagedera SKK; Dao TP; Enos SE; Chaudhuri A; Schmit JD; Castañeda CA
    bioRxiv; 2023 Apr; ():. PubMed ID: 36993708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase Separation of Intrinsically Disordered Proteins.
    Posey AE; Holehouse AS; Pappu RV
    Methods Enzymol; 2018; 611():1-30. PubMed ID: 30471685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular and environmental determinants of biomolecular condensate formation.
    Villegas JA; Heidenreich M; Levy ED
    Nat Chem Biol; 2022 Dec; 18(12):1319-1329. PubMed ID: 36400992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid network connectivity regulates the stability and composition of biomolecular condensates with many components.
    Espinosa JR; Joseph JA; Sanchez-Burgos I; Garaizar A; Frenkel D; Collepardo-Guevara R
    Proc Natl Acad Sci U S A; 2020 Jun; 117(24):13238-13247. PubMed ID: 32482873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular structure in biomolecular condensates.
    Peran I; Mittag T
    Curr Opin Struct Biol; 2020 Feb; 60():17-26. PubMed ID: 31790873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion binding with charge inversion combined with screening modulates DEAD box helicase phase transitions.
    Crabtree MD; Holland J; Pillai AS; Kompella PS; Babl L; Turner NN; Eaton JT; Hochberg GKA; Aarts DGAL; Redfield C; Baldwin AJ; Nott TJ
    Cell Rep; 2023 Nov; 42(11):113375. PubMed ID: 37980572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Connecting Coil-to-Globule Transitions to Full Phase Diagrams for Intrinsically Disordered Proteins.
    Zeng X; Holehouse AS; Chilkoti A; Mittag T; Pappu RV
    Biophys J; 2020 Jul; 119(2):402-418. PubMed ID: 32619404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preserving condensate structure and composition by lowering sequence complexity.
    Sood A; Zhang B
    Biophys J; 2024 Jul; 123(13):1815-1826. PubMed ID: 38824391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Making the Case for Disordered Proteins and Biomolecular Condensates in Bacteria.
    Cohan MC; Pappu RV
    Trends Biochem Sci; 2020 Aug; 45(8):668-680. PubMed ID: 32456986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developments in describing equilibrium phase transitions of multivalent associative macromolecules.
    Zeng X; Pappu RV
    Curr Opin Struct Biol; 2023 Apr; 79():102540. PubMed ID: 36804705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The stickers and spacers of Rubiscondensation: assembling the centrepiece of biophysical CO2-concentrating mechanisms.
    Ang WSL; How JA; How JB; Mueller-Cajar O
    J Exp Bot; 2023 Jan; 74(2):612-626. PubMed ID: 35903998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.