These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Cation-dependent segregation phenomena and phase behavior in model membrane systems containing phosphatidylserine: influence of cholesterol and acyl chain composition. Tilcock CP; Bally MB; Farren SB; Cullis PR; Gruner SM Biochemistry; 1984 Jun; 23(12):2696-703. PubMed ID: 6466608 [TBL] [Abstract][Full Text] [Related]
3. Thermodynamic, motional, and structural aspects of gramicidin-induced hexagonal HII phase formation in phosphatidylethanolamine. Killian JA; de Kruijff B Biochemistry; 1985 Dec; 24(27):7881-90. PubMed ID: 2418874 [TBL] [Abstract][Full Text] [Related]
4. 31P NMR studies of unsonicated aqueous dispersions of neutral and acidic phospholipids. Effects of phase transitions, p2H and divalent cations on the motion in the phosphate region of the polar headgroup. Cullis PR; De Kruyff B Biochim Biophys Acta; 1976 Jul; 436(3):523-40. PubMed ID: 952909 [TBL] [Abstract][Full Text] [Related]
5. The polymorphic phase behaviour of mixed phosphatidylserine-phosphatidylethanolamine model systems as detected by 31P-NMR. Tilcock CP; Cullis PR Biochim Biophys Acta; 1981 Feb; 641(1):189-201. PubMed ID: 7194114 [TBL] [Abstract][Full Text] [Related]
6. Gramicidin-induced hexagonal HII phase formation in negatively charged phospholipids and the effect of N- and C-terminal modification of gramicidin on its interaction with zwitterionic phospholipids. Killian JA; van den Berg CW; Tournois H; Keur S; Slotboom AJ; van Scharrenburg GJ; de Kruijff B Biochim Biophys Acta; 1986 May; 857(1):13-27. PubMed ID: 2421775 [TBL] [Abstract][Full Text] [Related]
7. Poly(ethylene glycol)-lipid conjugates promote bilayer formation in mixtures of non-bilayer-forming lipids. Holland JW; Cullis PR; Madden TD Biochemistry; 1996 Feb; 35(8):2610-7. PubMed ID: 8611564 [TBL] [Abstract][Full Text] [Related]
8. Polymorphism of phosphatidylethanolamine-phosphatidylserine model systems: influence of cholesterol and Mg2+ on Ca2+-triggered bilayer to hexagonal (HII) transitions. Bally MB; Tilcock CP; Hope MJ; Cullis PR Can J Biochem Cell Biol; 1983 Jun; 61(6):346-52. PubMed ID: 6883167 [TBL] [Abstract][Full Text] [Related]
9. Gramicidin-induced hexagonal HII phase formation in erythrocyte membranes. Tournois H; Leunissen-Bijvelt J; Haest CW; de Gier J; de Kruijff B Biochemistry; 1987 Oct; 26(21):6613-21. PubMed ID: 2447938 [TBL] [Abstract][Full Text] [Related]
10. Calcium-induced lipid phase separations and interactions of phosphatidylcholine/anionic phospholipid vesicles. Fluorescence studies using carbazole-labeled and brominated phospholipids. Silvius JR Biochemistry; 1990 Mar; 29(12):2930-8. PubMed ID: 2337575 [TBL] [Abstract][Full Text] [Related]
11. Effects of adriamycin on lipid polymorphism in cardiolipin-containing model and mitochondrial membranes. Nicolay K; van der Neut R; Fok JJ; de Kruijff B Biochim Biophys Acta; 1985 Sep; 819(1):55-65. PubMed ID: 4041451 [TBL] [Abstract][Full Text] [Related]
12. Alpha-tocopherol-induced hexagonal HII phase formation in egg yolk phosphatidylcholine membranes. Nakajima K; Utsumi H; Kazama M; Hamada A Chem Pharm Bull (Tokyo); 1990 Jan; 38(1):1-4. PubMed ID: 2337933 [TBL] [Abstract][Full Text] [Related]
13. Effect of lipid composition upon fusion of liposomes with Sendai virus membranes. Haywood AM; Boyer BP Biochemistry; 1984 Aug; 23(18):4161-6. PubMed ID: 6091739 [TBL] [Abstract][Full Text] [Related]
14. Ca2+ and pH induced fusion of small unilamellar vesicles consisting of phosphatidylethanolamine and negatively charged phospholipids: a freeze fracture study. Hope MJ; Walker DC; Cullis PR Biochem Biophys Res Commun; 1983 Jan; 110(1):15-22. PubMed ID: 6838506 [TBL] [Abstract][Full Text] [Related]
15. Influence of cholesterol on gramicidin-induced HII phase formation in phosphatidylcholine model membranes. Gasset M; Killian JA; Tournois H; de Kruijff B Biochim Biophys Acta; 1988 Mar; 939(1):79-88. PubMed ID: 2450586 [TBL] [Abstract][Full Text] [Related]
16. Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures. Huster D; Arnold K; Gawrisch K Biochemistry; 1998 Dec; 37(49):17299-308. PubMed ID: 9860844 [TBL] [Abstract][Full Text] [Related]
17. 113Cd-, 31P-NMR and fluorescence polarization studies of cadmium(II) interactions with phospholipids in model membranes. Girault L; Boudou A; Dufourc EJ Biochim Biophys Acta; 1998 Nov; 1414(1-2):140-54. PubMed ID: 9804929 [TBL] [Abstract][Full Text] [Related]
18. Effects of platelet-activating factor (PAF), lyso-PAF and lysophosphatidylcholine on phosphatidylcholine bilayers, an ESR, 31P-NMR and X-ray diffraction study. Olivier JL; Chachaty C; Quinn PJ; Wolf C J Lipid Mediat; 1991; 3(3):311-32. PubMed ID: 1663404 [TBL] [Abstract][Full Text] [Related]
19. The influence of poly(L-lysine) on phospholipid polymorphism. Evidence that electrostatic polypeptide-phospholipid interactions can modulate bilayer/non-bilayer transitions. de Kruijff B; Cullis PR Biochim Biophys Acta; 1980 Sep; 601(1):235-40. PubMed ID: 7407163 [TBL] [Abstract][Full Text] [Related]
20. Tracking phospholipid populations in polymorphism by sideband analyses of 31P magic angle spinning NMR. Moran L; Janes N Biophys J; 1998 Aug; 75(2):867-79. PubMed ID: 9675187 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]