BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 3365399)

  • 21. The stereospecific D-glucose transport activity of cholate extracts from human erythrocyte membranes.
    Lundahl P; Acevedo F; Fröman G; Phutrakul S
    Biochim Biophys Acta; 1981 Jun; 644(1):101-7. PubMed ID: 7196260
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibitions of sugar transport produced by ligands binding at opposite sides of the membrane. Evidence for simultaneous occupation of the carrier by maltose and cytochalasin B.
    Carruthers A; Helgerson AL
    Biochemistry; 1991 Apr; 30(16):3907-15. PubMed ID: 2018762
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of insulin receptor down-regulation on hexose transport in human erythrocytes.
    Dustin ML; Jacobson GR; Peterson SW
    J Biol Chem; 1984 Nov; 259(22):13660-3. PubMed ID: 6389533
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetics of nucleoside transport in human erythrocytes. Alterations during blood preservation.
    Plagemann PG; Wohlhueter RM
    Biochim Biophys Acta; 1984 Nov; 778(1):176-84. PubMed ID: 6498185
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glucose transport kinetics in human red blood cells.
    Gasbjerg PK; Brahm J
    Biochim Biophys Acta; 1991 Feb; 1062(1):83-93. PubMed ID: 1998714
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of the kinetics and thermodynamics of the carrier systems for glucose and leucine in human red blood cells.
    Walmsley AR; Lowe AG
    Biochim Biophys Acta; 1987 Jul; 901(2):229-38. PubMed ID: 3607048
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of glucose transport in human erythrocytes by ubiquinone Q0.
    Lowe AG; Critchley AJ; Brass A
    Biochim Biophys Acta; 1991 Nov; 1069(2):223-8. PubMed ID: 1932061
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glycosylation of the human erythrocyte glucose transporter is essential for glucose transport activity.
    Feugeas JP; Néel D; Pavia AA; Laham A; Goussault Y; Derappe C
    Biochim Biophys Acta; 1990 Nov; 1030(1):60-4. PubMed ID: 2265193
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Galactose transport in human erythrocytes. The transport mechanism is resolved into two simple asymmetric antiparallel carriers.
    Ginsburg H
    Biochim Biophys Acta; 1978 Jan; 506(1):119-35. PubMed ID: 620020
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An allosteric pore model for sugar transport in human erythrocytes.
    Holman GD
    Biochim Biophys Acta; 1980 Jun; 599(1):202-13. PubMed ID: 7397148
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence from temperature studies that the human erythrocyte hexose transporter has a transient memory of its dissociated ligands.
    Naftalin RJ
    Exp Physiol; 1998 Mar; 83(2):253-8. PubMed ID: 9568486
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence from studies of temperature-dependent changes of D-glucose, D-mannose and L-sorbose permeability that different states of activation of the human erythrocyte hexose transporter exist for good and bad substrates.
    Naftalin RJ
    Biochim Biophys Acta; 1997 Aug; 1328(1):13-29. PubMed ID: 9298941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anomalous asymmetric kinetics of human red cell hexose transfer: role of cytosolic adenosine 5'-triphosphate.
    Carruthers A
    Biochemistry; 1986 Jun; 25(12):3592-602. PubMed ID: 3718945
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The calculation of the half-saturation concentration for the entry of glucose into erythrocytes in infinite-cis conditions.
    Nimmo IA
    Anal Biochem; 1979 Jan; 92(2):361-6. PubMed ID: 443536
    [No Abstract]   [Full Text] [Related]  

  • 35. An analysis of the adequacy of the asymmetric carrier model for sugar transport.
    Foster DM; Jacquez JA
    Biochim Biophys Acta; 1976 Jun; 436(1):210-21. PubMed ID: 1276212
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of cyclosporine A uptake in human erythrocytes.
    Reichel C; von Falkenhausen M; Brockmeier D; Dengler HJ
    Eur J Clin Pharmacol; 1994; 46(5):417-9. PubMed ID: 7957535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stop-flow analysis of cooperative interactions between GLUT1 sugar import and export sites.
    Sultzman LA; Carruthers A
    Biochemistry; 1999 May; 38(20):6640-50. PubMed ID: 10350483
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Absence of rapid exchange component in a low-affinity carrier transport.
    LEFEVRE PG; HABICH KI
    J Gen Physiol; 1963 Mar; 46(4):721-31. PubMed ID: 13929247
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Maltosyl isothiocyanate: an affinity label for the glucose transporter of the human erythrocyte membrane. 1. Inhibition of glucose transport.
    Mullins RE; Langdon RG
    Biochemistry; 1980 Mar; 19(6):1199-205. PubMed ID: 7189410
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural requirements for binding to the sugar-transport system of the human erythrocyte.
    Barnett JE; Holman GD; Munday KA
    Biochem J; 1973 Feb; 131(2):211-21. PubMed ID: 4722437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.