These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 33654161)
1. Workflow towards automated segmentation of agglomerated, non-spherical particles from electron microscopy images using artificial neural networks. Rühle B; Krumrey JF; Hodoroaba VD Sci Rep; 2021 Mar; 11(1):4942. PubMed ID: 33654161 [TBL] [Abstract][Full Text] [Related]
2. Towards realistic laparoscopic image generation using image-domain translation. Marzullo A; Moccia S; Catellani M; Calimeri F; Momi E Comput Methods Programs Biomed; 2021 Mar; 200():105834. PubMed ID: 33229016 [TBL] [Abstract][Full Text] [Related]
3. Using deep learning to generate synthetic B-mode musculoskeletal ultrasound images. Cronin NJ; Finni T; Seynnes O Comput Methods Programs Biomed; 2020 Nov; 196():105583. PubMed ID: 32544777 [TBL] [Abstract][Full Text] [Related]
4. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images. Tong N; Gou S; Yang S; Cao M; Sheng K Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188 [TBL] [Abstract][Full Text] [Related]
5. A deep learning approach using synthetic images for segmenting and estimating 3D orientation of nanoparticles in EM images. Cid-Mejías A; Alonso-Calvo R; Gavilán H; Crespo J; Maojo V Comput Methods Programs Biomed; 2021 Apr; 202():105958. PubMed ID: 33588253 [TBL] [Abstract][Full Text] [Related]
6. Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network. Han L; Huang Y; Dou H; Wang S; Ahamad S; Luo H; Liu Q; Fan J; Zhang J Comput Methods Programs Biomed; 2020 Jun; 189():105275. PubMed ID: 31978805 [TBL] [Abstract][Full Text] [Related]
7. Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks. Gaj S; Yang M; Nakamura K; Li X Magn Reson Med; 2020 Jul; 84(1):437-449. PubMed ID: 31793071 [TBL] [Abstract][Full Text] [Related]
8. Image generation by GAN and style transfer for agar plate image segmentation. Andreini P; Bonechi S; Bianchini M; Mecocci A; Scarselli F Comput Methods Programs Biomed; 2020 Feb; 184():105268. PubMed ID: 31891902 [TBL] [Abstract][Full Text] [Related]
9. Unified generative adversarial networks for multimodal segmentation from unpaired 3D medical images. Yuan W; Wei J; Wang J; Ma Q; Tasdizen T Med Image Anal; 2020 Aug; 64():101731. PubMed ID: 32544841 [TBL] [Abstract][Full Text] [Related]
10. Improved automatic detection of herpesvirus secondary envelopment stages in electron microscopy by augmenting training data with synthetic labelled images generated by a generative adversarial network. Shaga Devan K; Walther P; von Einem J; Ropinski T; A Kestler H; Read C Cell Microbiol; 2021 Feb; 23(2):e13280. PubMed ID: 33073426 [TBL] [Abstract][Full Text] [Related]
11. The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs. Kessler DA; MacKay JW; Crowe VA; Henson FMD; Graves MJ; Gilbert FJ; Kaggie JD Comput Med Imaging Graph; 2020 Dec; 86():101793. PubMed ID: 33075675 [TBL] [Abstract][Full Text] [Related]
12. Deep learning from dual-energy information for whole-heart segmentation in dual-energy and single-energy non-contrast-enhanced cardiac CT. Bruns S; Wolterink JM; Takx RAP; van Hamersvelt RW; Suchá D; Viergever MA; Leiner T; Išgum I Med Phys; 2020 Oct; 47(10):5048-5060. PubMed ID: 32786071 [TBL] [Abstract][Full Text] [Related]
13. Domain adversarial networks and intensity-based data augmentation for male pelvic organ segmentation in cone beam CT. Brion E; Léger J; Barragán-Montero AM; Meert N; Lee JA; Macq B Comput Biol Med; 2021 Apr; 131():104269. PubMed ID: 33639352 [TBL] [Abstract][Full Text] [Related]
14. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Tong N; Gou S; Yang S; Ruan D; Sheng K Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285 [TBL] [Abstract][Full Text] [Related]
15. Comparing lesion segmentation methods in multiple sclerosis: Input from one manually delineated subject is sufficient for accurate lesion segmentation. Weeda MM; Brouwer I; de Vos ML; de Vries MS; Barkhof F; Pouwels PJW; Vrenken H Neuroimage Clin; 2019; 24():102074. PubMed ID: 31734527 [TBL] [Abstract][Full Text] [Related]
17. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. Pipitone J; Park MT; Winterburn J; Lett TA; Lerch JP; Pruessner JC; Lepage M; Voineskos AN; Chakravarty MM; Neuroimage; 2014 Nov; 101():494-512. PubMed ID: 24784800 [TBL] [Abstract][Full Text] [Related]
18. CAST: A multi-scale convolutional neural network based automated hippocampal subfield segmentation toolbox. Yang Z; Zhuang X; Mishra V; Sreenivasan K; Cordes D Neuroimage; 2020 Sep; 218():116947. PubMed ID: 32474081 [TBL] [Abstract][Full Text] [Related]
19. Cantonese Porcelain Image Generation Using User-Guided Generative Adversarial Networks. Chen SS; Cui H; Tan P; Sun X; Ji Y; Duh H; Potel M IEEE Comput Graph Appl; 2020; 40(5):100-107. PubMed ID: 32833625 [TBL] [Abstract][Full Text] [Related]
20. Deep learning for automated size and shape analysis of nanoparticles in scanning electron microscopy. Bals J; Epple M RSC Adv; 2023 Jan; 13(5):2795-2802. PubMed ID: 36756420 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]