BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 33654378)

  • 1. The Risks of miRNA Therapeutics: In a Drug Target Perspective.
    Zhang S; Cheng Z; Wang Y; Han T
    Drug Des Devel Ther; 2021; 15():721-733. PubMed ID: 33654378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNAi-Based Therapeutics and Novel RNA Bioengineering Technologies.
    Traber GM; Yu AM
    J Pharmacol Exp Ther; 2023 Jan; 384(1):133-154. PubMed ID: 35680378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Growing Class of Novel RNAi Therapeutics.
    Traber GM; Yu AM
    Mol Pharmacol; 2024 Jun; 106(1):13-20. PubMed ID: 38719476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNAs with Multiple Targets of Immune Checkpoints, as a Potential Sensitizer for Immune Checkpoint Inhibitors in Breast Cancer Treatment.
    Zhou H; Jia W; Lu L; Han R
    Cancers (Basel); 2023 Jan; 15(3):. PubMed ID: 36765782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trials and Tribulations of MicroRNA Therapeutics.
    Seyhan AA
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNAs as promising therapeutic agents: A perspective from acupuncture.
    Li S; Huang Q; Yang Q; Peng X; Wu Q
    Pathol Res Pract; 2023 Aug; 248():154652. PubMed ID: 37406378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leading RNA Interference Therapeutics Part 1: Silencing Hereditary Transthyretin Amyloidosis, with a Focus on Patisiran.
    Titze-de-Almeida SS; Brandão PRP; Faber I; Titze-de-Almeida R
    Mol Diagn Ther; 2020 Feb; 24(1):49-59. PubMed ID: 31701435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Innovative approaches in transforming microRNAs into therapeutic tools.
    Samad AFA; Kamaroddin MF
    Wiley Interdiscip Rev RNA; 2023 Jan; 14(1):e1768. PubMed ID: 36437633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying Cleaved and Noncleaved Targets of Small Interfering RNAs and MicroRNAs in Mammalian Cells by SpyCLIP.
    Zhang Y; Teng Y; Xiao W; Xu B; Zhao Y; Li W; Wu L
    Mol Ther Nucleic Acids; 2020 Dec; 22():900-909. PubMed ID: 33251041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. siRNA therapeutics: a clinical reality.
    Saw PE; Song EW
    Sci China Life Sci; 2020 Apr; 63(4):485-500. PubMed ID: 31054052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA-targeted therapeutics in cancer clinical trials: Current status and future directions.
    Barata P; Sood AK; Hong DS
    Cancer Treat Rev; 2016 Nov; 50():35-47. PubMed ID: 27612280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics.
    Kulkarni JA; Witzigmann D; Chen S; Cullis PR; van der Meel R
    Acc Chem Res; 2019 Sep; 52(9):2435-2444. PubMed ID: 31397996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of siRNA Therapeutics for the Treatment of Liver Diseases.
    Holm A; Løvendorf MB; Kauppinen S
    Methods Mol Biol; 2021; 2282():57-75. PubMed ID: 33928570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNA therapeutics: the emerging anticancer strategies.
    Jain CK; Gupta A; Dogra N; Kumar VS; Wadhwa G; Sharma SK
    Recent Pat Anticancer Drug Discov; 2014; 9(3):286-96. PubMed ID: 24605908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of miRNA-based therapeutic approaches for cancer patients.
    Takahashi RU; Prieto-Vila M; Kohama I; Ochiya T
    Cancer Sci; 2019 Apr; 110(4):1140-1147. PubMed ID: 30729639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA-based therapeutics for cancer.
    Wang V; Wu W
    BioDrugs; 2009; 23(1):15-23. PubMed ID: 19344188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leading RNA Interference Therapeutics Part 2: Silencing Delta-Aminolevulinic Acid Synthase 1, with a Focus on Givosiran.
    de Paula Brandão PR; Titze-de-Almeida SS; Titze-de-Almeida R
    Mol Diagn Ther; 2020 Feb; 24(1):61-68. PubMed ID: 31792921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of novel cardiovascular therapeutics from small regulatory RNA molecules--an outline of key requirements.
    Poller W; Fechner H
    Curr Pharm Des; 2010; 16(20):2252-68. PubMed ID: 20459390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Race of 10 Synthetic RNAi-Based Drugs to the Pharmaceutical Market.
    Titze-de-Almeida R; David C; Titze-de-Almeida SS
    Pharm Res; 2017 Jul; 34(7):1339-1363. PubMed ID: 28389707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNAi-based drug discovery and its application to therapeutics.
    Hokaiwado N; Takeshita F; Banas A; Ochiya T
    IDrugs; 2008 Apr; 11(4):274-8. PubMed ID: 18379962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.