These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33654943)

  • 1. Detection of
    Meiresonne NY; Consoli E; Mertens LMY; den Blaauwen T
    Bio Protoc; 2019 Dec; 9(23):e3448. PubMed ID: 33654943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superfolder mTurquoise2
    Meiresonne NY; Consoli E; Mertens LMY; Chertkova AO; Goedhart J; den Blaauwen T
    Mol Microbiol; 2019 Apr; 111(4):1025-1038. PubMed ID: 30648295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of Protein Interactions in the Cytoplasm and Periplasm of
    Meiresonne NY; Alexeeva S; van der Ploeg R; den Blaauwen T
    Bio Protoc; 2018 Jan; 8(2):e2697. PubMed ID: 34179246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimising expression of the large dynamic range FRET pair mNeonGreen and superfolder mTurquoise2
    Mertens LMY; den Blaauwen T
    Sci Rep; 2022 Oct; 12(1):17977. PubMed ID: 36289441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a spectrally diverse set of fluorescent proteins as FRET acceptors for mTurquoise2.
    Mastop M; Bindels DS; Shaner NC; Postma M; Gadella TWJ; Goedhart J
    Sci Rep; 2017 Sep; 7(1):11999. PubMed ID: 28931898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superior robustness of ExEm-spFRET to IIem-spFRET method in live-cell FRET measurement.
    Lin F; Zhang C; Du M; Wang L; Mai Z; Chen T
    J Microsc; 2018 Nov; 272(2):145-150. PubMed ID: 30338530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing the performance of mScarlet-I, mRuby3, and mCherry as FRET acceptors for mNeonGreen.
    McCullock TW; MacLean DM; Kammermeier PJ
    PLoS One; 2020; 15(2):e0219886. PubMed ID: 32023253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity-Related Conformational Changes in d,d-Carboxypeptidases Revealed by
    Meiresonne NY; van der Ploeg R; Hink MA; den Blaauwen T
    mBio; 2017 Sep; 8(5):. PubMed ID: 28900026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing Protein Interactions in Live-Cells with FRET-Sensitized Emission.
    Vámosi G; Miller S; Sinha M; Fernandez MK; Mocsár G; Renz M
    J Vis Exp; 2021 Apr; (170):. PubMed ID: 33970141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosensor Optimization Using a Förster Resonance Energy Transfer Pair Based on mScarlet Red Fluorescent Protein and an mScarlet-Derived Green Fluorescent Protein.
    Gohil K; Wu SY; Takahashi-Yamashiro K; Shen Y; Campbell RE
    ACS Sens; 2023 Feb; 8(2):587-597. PubMed ID: 36693235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Booster, a Red-Shifted Genetically Encoded Förster Resonance Energy Transfer (FRET) Biosensor Compatible with Cyan Fluorescent Protein/Yellow Fluorescent Protein-Based FRET Biosensors and Blue Light-Responsive Optogenetic Tools.
    Watabe T; Terai K; Sumiyama K; Matsuda M
    ACS Sens; 2020 Mar; 5(3):719-730. PubMed ID: 32101394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlative Förster Resonance Electron Transfer-Proximity Ligation Assay (FRET-PLA) Technique for Studying Interactions Involving Membrane Proteins.
    Ivanusic D; Denner J; Bannert N
    Curr Protoc Protein Sci; 2016 Aug; 85():29.17.1-29.17.13. PubMed ID: 27479505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring protein interactions using Förster resonance energy transfer and fluorescence lifetime imaging microscopy.
    Day RN
    Methods; 2014 Mar; 66(2):200-7. PubMed ID: 23806643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling Förster resonance energy transfer (FRET) using anisotropy resolved multi-dimensional emission spectroscopy (ARMES).
    Gordon F; Elcoroaristizabal S; Ryder AG
    Biochim Biophys Acta Gen Subj; 2021 Feb; 1865(2):129770. PubMed ID: 33214128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative FRET analysis with the EGFP-mCherry fluorescent protein pair.
    Albertazzi L; Arosio D; Marchetti L; Ricci F; Beltram F
    Photochem Photobiol; 2009; 85(1):287-97. PubMed ID: 18764891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescent protein-based FRET sensor for intracellular monitoring of redox status in bacteria at single cell level.
    Abraham BG; Santala V; Tkachenko NV; Karp M
    Anal Bioanal Chem; 2014 Nov; 406(28):7195-204. PubMed ID: 25224640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells.
    Müller SM; Galliardt H; Schneider J; Barisas BG; Seidel T
    Front Plant Sci; 2013 Oct; 4():413. PubMed ID: 24194740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.