These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33655283)

  • 1. Complex coacervation and metal-ligand bonding as synergistic design elements for aqueous viscoelastic materials.
    Filippov AD; Sprakel J; Kamperman M
    Soft Matter; 2021 Mar; 17(12):3294-3305. PubMed ID: 33655283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear viscoelasticity of complex coacervates.
    Liu Y; Winter HH; Perry SL
    Adv Colloid Interface Sci; 2017 Jan; 239():46-60. PubMed ID: 27633928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Dynamically Arrested Domains on the Phase Behavior, Linear Viscoelasticity and Microstructure of Hyaluronic Acid - Chitosan Complex Coacervates.
    Es Sayed J; Caïto C; Arunachalam A; Amirsadeghi A; van Westerveld L; Maret D; Mohamed Yunus RA; Calicchia E; Dittberner O; Portale G; Parisi D; Kamperman M
    Macromolecules; 2023 Aug; 56(15):5891-5904. PubMed ID: 37576476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relaxation Behavior by Time-Salt and Time-Temperature Superpositions of Polyelectrolyte Complexes from Coacervate to Precipitate.
    Ali S; Prabhu VM
    Gels; 2018 Jan; 4(1):. PubMed ID: 30674787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex coacervation of poly(ethylene-imine)/polypeptide aqueous solutions: thermodynamic and rheological characterization.
    Priftis D; Megley K; Laugel N; Tirrell M
    J Colloid Interface Sci; 2013 May; 398():39-50. PubMed ID: 23518303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of coacervation conditions on the viscoelastic properties of N,O-carboxymethyl chitosan - gum Arabic coacervates.
    Huang GQ; Du YL; Xiao JX; Wang GY
    Food Chem; 2017 Aug; 228():236-242. PubMed ID: 28317718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aqueous self-assembly of arginine and K
    Liu X; Xie X; Du Z; Li B; Wu L; Li W
    Soft Matter; 2019 Dec; 15(45):9178-9186. PubMed ID: 31584062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein/polyelectrolyte coacervation: Investigating its occurrence in the lysozyme- carboxymethylcellulose system.
    Yoshihara LMB; Arêas EPG
    Biophys Chem; 2018 May; 236():8-14. PubMed ID: 29524614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheological and Microstructural Characteristics of Canola Protein Isolate-Chitosan Complex Coacervates.
    Chang PG; Gupta R; Timilsena YP
    J Food Sci; 2019 May; 84(5):1104-1112. PubMed ID: 30994940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-healing fish gelatin/sodium montmorillonite biohybrid coacervates: structural and rheological characterization.
    Qazvini NT; Bolisetty S; Adamcik J; Mezzenga R
    Biomacromolecules; 2012 Jul; 13(7):2136-47. PubMed ID: 22642874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of small molecules on the phase behavior and coacervation of aqueous solutions of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrene sulfonate).
    Huang S; Zhao M; Dawadi MB; Cai Y; Lapitsky Y; Modarelli DA; Zacharia NS
    J Colloid Interface Sci; 2018 May; 518():216-224. PubMed ID: 29459301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic-inorganic macroion coacervate complexation.
    Jing B; Qiu J; Zhu Y
    Soft Matter; 2017 Jul; 13(28):4881-4889. PubMed ID: 28631793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crossover from Rouse to Reptation Dynamics in Salt-Free Polyelectrolyte Complex Coacervates.
    Yu B; Rauscher PM; Jackson NE; Rumyantsev AM; de Pablo JJ
    ACS Macro Lett; 2020 Sep; 9(9):1318-1324. PubMed ID: 35638633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adhesive Coacervates Driven by Hydrogen-Bonding Interaction.
    Peng Q; Chen J; Zeng Z; Wang T; Xiang L; Peng X; Liu J; Zeng H
    Small; 2020 Oct; 16(43):e2004132. PubMed ID: 33006447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rheological interfacial properties of plant protein-arabic gum coacervates at the oil-water interface.
    Ducel V; Richard J; Popineau Y; Boury F
    Biomacromolecules; 2005; 6(2):790-6. PubMed ID: 15762643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein encapsulation via polyelectrolyte complex coacervation: Protection against protein denaturation.
    Zhao M; Zacharia NS
    J Chem Phys; 2018 Oct; 149(16):163326. PubMed ID: 30384671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and structural basis of low interfacial energy of complex coacervates in water.
    Jho Y; Yoo HY; Lin Y; Han S; Hwang DS
    Adv Colloid Interface Sci; 2017 Jan; 239():61-73. PubMed ID: 27499328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex coacervation of supercharged proteins with polyelectrolytes.
    Obermeyer AC; Mills CE; Dong XH; Flores RJ; Olsen BD
    Soft Matter; 2016 Apr; 12(15):3570-81. PubMed ID: 26965053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bicontinuous Fluid Structure with Low Cohesive Energy: Molecular Basis for Exceptionally Low Interfacial Tension of Complex Coacervate Fluids.
    Huang KY; Yoo HY; Jho Y; Han S; Hwang DS
    ACS Nano; 2016 May; 10(5):5051-62. PubMed ID: 27152954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA-gelatin complex coacervation, UCST and first-order phase transition of coacervate to anisotropic ion gel in 1-methyl-3-octylimidazolium chloride ionic liquid solutions.
    Rawat K; Aswal VK; Bohidar HB
    J Phys Chem B; 2012 Dec; 116(51):14805-16. PubMed ID: 23194173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.