These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33655468)

  • 1. Label cleaning and propagation for improved segmentation performance using fully convolutional networks.
    Sugino T; Suzuki Y; Kin T; Saito N; Onogi S; Kawase T; Mori K; Nakajima Y
    Int J Comput Assist Radiol Surg; 2021 Mar; 16(3):349-361. PubMed ID: 33655468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance improvement of weakly supervised fully convolutional networks by skip connections for brain structure segmentation.
    Sugino T; Roth HR; Oda M; Kin T; Saito N; Nakajima Y; Mori K
    Med Phys; 2021 Nov; 48(11):7215-7227. PubMed ID: 34453333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Image Segmentation With Sparse Annotation by Self-Training and Internal Registration.
    Bitarafan A; Nikdan M; Baghshah MS
    IEEE J Biomed Health Inform; 2021 Jul; 25(7):2665-2672. PubMed ID: 33211667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A data augmentation approach to train fully convolutional networks for left ventricle segmentation.
    Lin A; Wu J; Yang X
    Magn Reson Imaging; 2020 Feb; 66():152-164. PubMed ID: 31476360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sparse annotation learning for dense volumetric MR image segmentation with uncertainty estimation.
    Osman YBM; Li C; Huang W; Wang S
    Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38035374
    [No Abstract]   [Full Text] [Related]  

  • 6. Automatic liver segmentation by integrating fully convolutional networks into active contour models.
    Guo X; Schwartz LH; Zhao B
    Med Phys; 2019 Oct; 46(10):4455-4469. PubMed ID: 31356688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning normalized inputs for iterative estimation in medical image segmentation.
    Drozdzal M; Chartrand G; Vorontsov E; Shakeri M; Di Jorio L; Tang A; Romero A; Bengio Y; Pal C; Kadoury S
    Med Image Anal; 2018 Feb; 44():1-13. PubMed ID: 29169029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation of the effect of fat suppression and dimensionality on the accuracy of breast MRI segmentation using U-nets.
    Fashandi H; Kuling G; Lu Y; Wu H; Martel AL
    Med Phys; 2019 Mar; 46(3):1230-1244. PubMed ID: 30609062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Annotation-efficient training of medical image segmentation network based on scribble guidance in difficult areas.
    Zhuang M; Chen Z; Yang Y; Kettunen L; Wang H
    Int J Comput Assist Radiol Surg; 2024 Jan; 19(1):87-96. PubMed ID: 37233894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images.
    Chen H; Dou Q; Yu L; Qin J; Heng PA
    Neuroimage; 2018 Apr; 170():446-455. PubMed ID: 28445774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.
    Zhou X; Takayama R; Wang S; Hara T; Fujita H
    Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convolutional neural networks for skull-stripping in brain MR imaging using silver standard masks.
    Lucena O; Souza R; Rittner L; Frayne R; Lotufo R
    Artif Intell Med; 2019 Jul; 98():48-58. PubMed ID: 31521252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 3D Cross-Modality Feature Interaction Network With Volumetric Feature Alignment for Brain Tumor and Tissue Segmentation.
    Zhuang Y; Liu H; Song E; Hung CC
    IEEE J Biomed Health Inform; 2023 Jan; 27(1):75-86. PubMed ID: 36251915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AdaEn-Net: An ensemble of adaptive 2D-3D Fully Convolutional Networks for medical image segmentation.
    Baldeon Calisto M; Lai-Yuen SK
    Neural Netw; 2020 Jun; 126():76-94. PubMed ID: 32203876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. S-CUDA: Self-cleansing unsupervised domain adaptation for medical image segmentation.
    Liu L; Zhang Z; Li S; Ma K; Zheng Y
    Med Image Anal; 2021 Dec; 74():102214. PubMed ID: 34464837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D deeply supervised network for automated segmentation of volumetric medical images.
    Dou Q; Yu L; Chen H; Jin Y; Yang X; Qin J; Heng PA
    Med Image Anal; 2017 Oct; 41():40-54. PubMed ID: 28526212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully convolutional networks (FCNs)-based segmentation method for colorectal tumors on T2-weighted magnetic resonance images.
    Jian J; Xiong F; Xia W; Zhang R; Gu J; Wu X; Meng X; Gao X
    Australas Phys Eng Sci Med; 2018 Jun; 41(2):393-401. PubMed ID: 29654521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dermoscopic Image Segmentation via Multistage Fully Convolutional Networks.
    Bi L; Kim J; Ahn E; Kumar A; Fulham M; Feng D
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2065-2074. PubMed ID: 28600236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfer learning in medical image segmentation: New insights from analysis of the dynamics of model parameters and learned representations.
    Karimi D; Warfield SK; Gholipour A
    Artif Intell Med; 2021 Jun; 116():102078. PubMed ID: 34020754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated sub-cortical brain structure segmentation combining spatial and deep convolutional features.
    Kushibar K; Valverde S; González-Villà S; Bernal J; Cabezas M; Oliver A; Lladó X
    Med Image Anal; 2018 Aug; 48():177-186. PubMed ID: 29935442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.