These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Unraveling protein stabilization mechanisms: vitrification and water replacement in a glass transition temperature controlled system. Grasmeijer N; Stankovic M; de Waard H; Frijlink HW; Hinrichs WL Biochim Biophys Acta; 2013 Apr; 1834(4):763-9. PubMed ID: 23360765 [TBL] [Abstract][Full Text] [Related]
23. Glass transition temperature and its relevance in food processing. Roos YH Annu Rev Food Sci Technol; 2010; 1():469-96. PubMed ID: 22129345 [TBL] [Abstract][Full Text] [Related]
24. Molecular Dynamics and Physical Stability of Pharmaceutical Co-amorphous Systems: Correlation Between Structural Relaxation Times Measured by Kohlrausch-Williams-Watts With the Width of the Glass Transition Temperature (ΔT Chieng N; Teo X; Cheah MH; Choo ML; Chung J; Hew TK; Keng PS J Pharm Sci; 2019 Dec; 108(12):3848-3858. PubMed ID: 31542436 [TBL] [Abstract][Full Text] [Related]
25. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Hancock BC; Shamblin SL; Zografi G Pharm Res; 1995 Jun; 12(6):799-806. PubMed ID: 7667182 [TBL] [Abstract][Full Text] [Related]
26. Molecular relaxation behavior and isothermal crystallization above glass transition temperature of amorphous hesperetin. Shete G; Khomane KS; Bansal AK J Pharm Sci; 2014 Jan; 103(1):167-78. PubMed ID: 24186540 [TBL] [Abstract][Full Text] [Related]
27. Effect of water content on the glass transition temperature of mixtures of sugars, polymers, and penetrating cryoprotectants in physiological buffer. Drake AC; Lee Y; Burgess EM; Karlsson JOM; Eroglu A; Higgins AZ PLoS One; 2018; 13(1):e0190713. PubMed ID: 29304068 [TBL] [Abstract][Full Text] [Related]
28. Glass-Transition Temperature of the β-Relaxation as the Major Predictive Parameter for Recrystallization of Neat Amorphous Drugs. Kissi EO; Grohganz H; Löbmann K; Ruggiero MT; Zeitler JA; Rades T J Phys Chem B; 2018 Mar; 122(10):2803-2808. PubMed ID: 29498523 [TBL] [Abstract][Full Text] [Related]
29. What We Need to Know about Solid-State Isothermal Crystallization of Organic Molecules from the Amorphous State below the Glass Transition Temperature. Newman A; Zografi G Mol Pharm; 2020 Jun; 17(6):1761-1777. PubMed ID: 32275832 [TBL] [Abstract][Full Text] [Related]
30. Glass transition, crystallization kinetics, and inter-conformer relaxation dynamics of amorphous mitotane and related compounds. Romanini M; Pérez Valmaseda A; Macovez R Int J Pharm; 2022 Dec; 629():122390. PubMed ID: 36379398 [TBL] [Abstract][Full Text] [Related]
31. Impact of water activity, temperature, and physical state on the storage stability of Lactobacillus paracasei ssp. paracasei freeze-dried in a lactose matrix. Higl B; Kurtmann L; Carlsen CU; Ratjen J; Först P; Skibsted LH; Kulozik U; Risbo J Biotechnol Prog; 2007; 23(4):794-800. PubMed ID: 17636886 [TBL] [Abstract][Full Text] [Related]
32. Thermodynamic aspects of vitrification. Wowk B Cryobiology; 2010 Feb; 60(1):11-22. PubMed ID: 19538955 [TBL] [Abstract][Full Text] [Related]
33. Thermal Behavior and Slow Relaxation Dynamics in Amorphous Efavirenz: A Study by DSC, XRPD, TSDC, and DRS. Moura Ramos JJ; Piedade MFM; Diogo HP; Viciosa MT J Pharm Sci; 2019 Mar; 108(3):1254-1263. PubMed ID: 30391416 [TBL] [Abstract][Full Text] [Related]
34. Use of ramping and equilibrium water vapor sorption methods to determine the critical relative humidity at which the glassy to rubbery transition occurs in polydextrose. Li QE; Schmidt SJ J Food Sci; 2011; 76(1):E149-57. PubMed ID: 21535666 [TBL] [Abstract][Full Text] [Related]
35. Glass transition and time-dependent crystallization behavior of dehydration bioprotectant sugars. Schebor C; Mazzobre MF; Buera Mdel P Carbohydr Res; 2010 Jan; 345(2):303-8. PubMed ID: 19962131 [TBL] [Abstract][Full Text] [Related]
36. Thermal behavior and molecular mobility studies in the supercooled liquid and glassy states of carvedilol and loratadine. Viciosa MT; Moura Ramos JJ; Diogo HP Int J Pharm; 2020 Jun; 584():119410. PubMed ID: 32445909 [TBL] [Abstract][Full Text] [Related]
37. Implications of storage and handling conditions on glass transition and potential devitrification of oocytes and embryos. Sansinena M; Santos MV; Taminelli G; Zaritky N Theriogenology; 2014 Aug; 82(3):373-8. PubMed ID: 24861980 [TBL] [Abstract][Full Text] [Related]
38. Thermodynamics, molecular mobility and crystallization kinetics of amorphous griseofulvin. Zhou D; Zhang GG; Law D; Grant DJ; Schmitt EA Mol Pharm; 2008; 5(6):927-36. PubMed ID: 19434849 [TBL] [Abstract][Full Text] [Related]
39. Crystallization kinetics and molecular mobility of an amorphous active pharmaceutical ingredient: A case study with Biclotymol. Schammé B; Couvrat N; Malpeli P; Delbreilh L; Dupray V; Dargent É; Coquerel G Int J Pharm; 2015 Jul; 490(1-2):248-57. PubMed ID: 26003417 [TBL] [Abstract][Full Text] [Related]
40. Effect of galacto-oligosaccharide purity on water sorption and plasticization behavior. Lans AM; Vodovotz Y Food Chem; 2018 Dec; 268():9-14. PubMed ID: 30064808 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]