BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 33656028)

  • 1. Tough, permeable and biocompatible microfluidic devices formed through the buckling delamination of soft hydrogel films.
    Takahashi R; Miyazako H; Tanaka A; Ueno Y; Yamaguchi M
    Lab Chip; 2021 Apr; 21(7):1307-1317. PubMed ID: 33656028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Creation of 3D Hydrogel Architectures via Selective Swelling Programmed by Interfacial Bonding.
    Takahashi R; Miyazako H; Tanaka A; Ueno Y
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28267-28277. PubMed ID: 31305055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CO
    Yao Y; Fan Y
    Biomed Microdevices; 2021 Sep; 23(4):47. PubMed ID: 34550472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable and Automated Fabrication of Conductive Tough-Hydrogel Microfibers with Ultrastretchability, 3D Printability, and Stress Sensitivity.
    Wei S; Qu G; Luo G; Huang Y; Zhang H; Zhou X; Wang L; Liu Z; Kong T
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11204-11212. PubMed ID: 29504395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling fluid flow to hydrogel fluidic devices with reversible "pop-it" connections.
    Abbasi R; LeFevre TB; Benjamin AD; Thornton IJ; Wilking JN
    Lab Chip; 2021 May; 21(10):2050-2058. PubMed ID: 33861296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photopatterning of tough single-walled carbon nanotube composites in microfluidic channels and their application in gel-free separations.
    Makamba H; Huang JW; Chen HH; Chen SH
    Electrophoresis; 2008 Jun; 29(12):2458-65. PubMed ID: 18512680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of a Monolithic Lab-on-a-Chip Platform with Integrated Hydrogel Waveguides for Chemical Sensing.
    Torres-Mapa ML; Singh M; Simon O; Mapa JL; Machida M; Günther A; Roth B; Heinemann D; Terakawa M; Heisterkamp A
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31597248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile Fabrication of Hollow Hydrogel Microfiber via 3D Printing-Assisted Microfluidics and Its Application as a Biomimetic Blood Capillary.
    Lan D; Shang Y; Su H; Liang M; Liu Y; Li H; Feng Q; Cao X; Dong H
    ACS Biomater Sci Eng; 2021 Oct; 7(10):4971-4981. PubMed ID: 34503336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photo-crosslinkable hydrogel-based 3D microfluidic culture device.
    Lee Y; Lee JM; Bae PK; Chung IY; Chung BH; Chung BG
    Electrophoresis; 2015 Apr; 36(7-8):994-1001. PubMed ID: 25641332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-functionalized silk hydrogel microfluidic systems.
    Zhao S; Chen Y; Partlow BP; Golding AS; Tseng P; Coburn J; Applegate MB; Moreau JE; Omenetto FG; Kaplan DL
    Biomaterials; 2016 Jul; 93():60-70. PubMed ID: 27077566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Tough Metallosupramolecular Hydrogel Films with Kirigami Structures for Compliant Soft Electronics.
    Yu HC; Hao XP; Zhang CW; Zheng SY; Du M; Liang S; Wu ZL; Zheng Q
    Small; 2021 Oct; 17(41):e2103836. PubMed ID: 34514699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freestanding 3-D microvascular networks made of alginate hydrogel as a universal tool to create microchannels inside hydrogels.
    Hu C; Sun H; Liu Z; Chen Y; Chen Y; Wu H; Ren K
    Biomicrofluidics; 2016 Jul; 10(4):044112. PubMed ID: 27679676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Layer-by-layer fabrication of 3D hydrogel structures using open microfluidics.
    Lee UN; Day JH; Haack AJ; Bretherton RC; Lu W; DeForest CA; Theberge AB; Berthier E
    Lab Chip; 2020 Feb; 20(3):525-536. PubMed ID: 31915779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rollable Microfluidic Systems with Microscale Bending Radius and Tuning of Device Function with Reconfigurable 3D Channel Geometry.
    Kim J; You JB; Nam SM; Seo S; Im SG; Lee W
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):11156-11166. PubMed ID: 28267308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vessel-on-a-chip with Hydrogel-based Microfluidics.
    Nie J; Gao Q; Wang Y; Zeng J; Zhao H; Sun Y; Shen J; Ramezani H; Fu Z; Liu Z; Xiang M; Fu J; Zhao P; Chen W; He Y
    Small; 2018 Nov; 14(45):e1802368. PubMed ID: 30307698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogel-based reconfigurable components for microfluidic devices.
    Kim D; Beebe DJ
    Lab Chip; 2007 Feb; 7(2):193-8. PubMed ID: 17268621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogel-enabled osmotic pumping for microfluidics: towards wearable human-device interfaces.
    Shay T; Dickey MD; Velev OD
    Lab Chip; 2017 Feb; 17(4):710-716. PubMed ID: 28150821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired reconfiguration of 3D printed microfluidic hydrogels via automated manipulation of magnetic inks.
    Mansoorifar A; Tahayeri A; Bertassoni LE
    Lab Chip; 2020 May; 20(10):1713-1719. PubMed ID: 32363355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creating Stiff, Tough, and Functional Hydrogel Composites with Low-Melting-Point Alloys.
    Takahashi R; Sun TL; Saruwatari Y; Kurokawa T; King DR; Gong JP
    Adv Mater; 2018 Apr; 30(16):e1706885. PubMed ID: 29534320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.