BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 33656340)

  • 1. Adsorption and Aggregation of Monoclonal Antibodies at Silicone Oil-Water Interfaces.
    Kannan A; Shieh IC; Negulescu PG; Chandran Suja V; Fuller GG
    Mol Pharm; 2021 Apr; 18(4):1656-1665. PubMed ID: 33656340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking aggregation and interfacial properties in monoclonal antibody-surfactant formulations.
    Kannan A; Shieh IC; Fuller GG
    J Colloid Interface Sci; 2019 Aug; 550():128-138. PubMed ID: 31055138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gelation of a monoclonal antibody at the silicone oil-water interface and subsequent rupture of the interfacial gel results in aggregation and particle formation.
    Mehta SB; Lewus R; Bee JS; Randolph TW; Carpenter JF
    J Pharm Sci; 2015 Apr; 104(4):1282-90. PubMed ID: 25639229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant Effects on Particle Generation in Antibody Formulations in Pre-filled Syringes.
    Gerhardt A; Mcumber AC; Nguyen BH; Lewus R; Schwartz DK; Carpenter JF; Randolph TW
    J Pharm Sci; 2015 Dec; 104(12):4056-4064. PubMed ID: 26413998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-silicone oil interactions: comparative effect of nonionic surfactants on the interfacial behavior of a fusion protein.
    Dixit N; Maloney KM; Kalonia DS
    Pharm Res; 2013 Jul; 30(7):1848-59. PubMed ID: 23568525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic understanding of protein-silicone oil interactions.
    Li J; Pinnamaneni S; Quan Y; Jaiswal A; Andersson FI; Zhang X
    Pharm Res; 2012 Jun; 29(6):1689-97. PubMed ID: 22350802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Surfactants on the Functionality of Prefilled Syringes.
    Wang T; Richard CA; Dong X; Shi GH
    J Pharm Sci; 2020 Nov; 109(11):3413-3422. PubMed ID: 32771345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein aggregation and particle formation in prefilled glass syringes.
    Gerhardt A; Mcgraw NR; Schwartz DK; Bee JS; Carpenter JF; Randolph TW
    J Pharm Sci; 2014 Jun; 103(6):1601-12. PubMed ID: 24729310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic strength affects tertiary structure and aggregation propensity of a monoclonal antibody adsorbed to silicone oil-water interfaces.
    Gerhardt A; Bonam K; Bee JS; Carpenter JF; Randolph TW
    J Pharm Sci; 2013 Feb; 102(2):429-40. PubMed ID: 23212809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential Surface Adsorption Phenomena for Conventional and Novel Surfactants Correlates with Changes in Interfacial mAb Stabilization.
    Kanthe AD; Carnovale MR; Katz JS; Jordan S; Krause ME; Zheng S; Ilott A; Ying W; Bu W; Bera MK; Lin B; Maldarelli C; Tu RS
    Mol Pharm; 2022 Sep; 19(9):3100-3113. PubMed ID: 35882380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactant Impact on Interfacial Protein Aggregation and Utilization of Surface Tension to Predict Surfactant Requirements for Biological Formulations.
    Vargo KB; Stahl P; Hwang B; Hwang E; Giordano D; Randolph P; Celentano C; Hepler R; Amin K
    Mol Pharm; 2021 Jan; 18(1):148-157. PubMed ID: 33253579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competitive Adsorption of a Monoclonal Antibody and Nonionic Surfactant at the PDMS/Water Interface.
    Shen K; Hu X; Li Z; Liao M; Zhuang Z; Ruane S; Wang Z; Li P; Micciulla S; Kasinathan N; Kalonia C; Lu JR
    Mol Pharm; 2023 May; 20(5):2502-2512. PubMed ID: 37012645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicone oil- and agitation-induced aggregation of a monoclonal antibody in aqueous solution.
    Thirumangalathu R; Krishnan S; Ricci MS; Brems DN; Randolph TW; Carpenter JF
    J Pharm Sci; 2009 Sep; 98(9):3167-81. PubMed ID: 19360857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Albinterferon α2b adsorption to silicone oil-water interfaces: effects on protein conformation, aggregation, and subvisible particle formation.
    Basu P; Blake-Haskins AW; O'Berry KB; Randolph TW; Carpenter JF
    J Pharm Sci; 2014 Feb; 103(2):427-36. PubMed ID: 24382812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of Tween(®) 20 on silicone oil-fusion protein interactions.
    Dixit N; Maloney KM; Kalonia DS
    Int J Pharm; 2012 Jun; 429(1-2):158-67. PubMed ID: 22429889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-Use Interfacial Stability of Monoclonal Antibody Formulations Diluted in Saline i.v. Bags.
    Kannan A; Shieh IC; Hristov P; Fuller GG
    J Pharm Sci; 2021 Apr; 110(4):1687-1692. PubMed ID: 33141046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing Molecular Interactions of Antibody Drugs, Silicone Oil, and Surfactant at Buried Interfaces In Situ.
    Lu T; Fu L; Qiu Y; Zhang J; Chen Z
    Anal Chem; 2022 Oct; 94(42):14761-14768. PubMed ID: 36215703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein adsorption and excipient effects on kinetic stability of silicone oil emulsions.
    Ludwig DB; Carpenter JF; Hamel JB; Randolph TW
    J Pharm Sci; 2010 Apr; 99(4):1721-33. PubMed ID: 19894257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colloidal Instability Fosters Agglomeration of Subvisible Particles Created by Rupture of Gels of a Monoclonal Antibody Formed at Silicone Oil-Water Interfaces.
    Mehta SB; Carpenter JF; Randolph TW
    J Pharm Sci; 2016 Aug; 105(8):2338-48. PubMed ID: 27422087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the Influence of Polysorbate 20/80 and Polaxomer P188 on the Surface & Interfacial Properties of Bovine Serum Albumin and Lysozyme.
    Begum F; Amin S
    Pharm Res; 2019 May; 36(7):107. PubMed ID: 31111248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.