These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33656367)

  • 1. Diversity, Pathogenicity, and Fungicide Sensitivity of Fungal Species Associated with Late-Season Rots of Wine Grape in the Mid-Atlantic United States.
    Cosseboom SD; Hu M
    Plant Dis; 2021 Oct; 105(10):3101-3110. PubMed ID: 33656367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Off-target selection of resistance to azoxystrobin in Aspergillus species associated with grape late season rots.
    Cosseboom SD; Hu M
    Pestic Biochem Physiol; 2022 Nov; 188():105227. PubMed ID: 36464347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and Pathogenicity of
    Cosseboom SD; Hu M
    Plant Dis; 2023 Oct; 107(10):2929-2934. PubMed ID: 37005504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracking cell wall changes in wine and table grapes undergoing Botrytis cinerea infection using glycan microarrays.
    Weiller F; Schückel J; Willats WGT; Driouich A; Vivier MA; Moore JP
    Ann Bot; 2021 Sep; 128(5):527-543. PubMed ID: 34192306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability and fitness of pyraclostrobin- and boscalid-resistant phenotypes in field isolates of Botrytis cinerea from apple.
    Kim YK; Xiao CL
    Phytopathology; 2011 Nov; 101(11):1385-91. PubMed ID: 21692646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of Grapevine Leafroll Disease on Fruit Yield and Grape and Wine Chemistry in a Wine Grape (Vitis vinifera L.) Cultivar.
    Alabi OJ; Casassa LF; Gutha LR; Larsen RC; Henick-Kling T; Harbertson JF; Naidu RA
    PLoS One; 2016; 11(2):e0149666. PubMed ID: 26919614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymorphism and phylogenetic species delimitation in filamentous fungi from predominant mycobiota in withered grapes.
    Lorenzini M; Cappello MS; Logrieco A; Zapparoli G
    Int J Food Microbiol; 2016 Dec; 238():56-62. PubMed ID: 27591387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The microbial ecology of wine grape berries.
    Barata A; Malfeito-Ferreira M; Loureiro V
    Int J Food Microbiol; 2012 Feb; 153(3):243-59. PubMed ID: 22189021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grapevine bunch rots: impacts on wine composition, quality, and potential procedures for the removal of wine faults.
    Steel CC; Blackman JW; Schmidtke LM
    J Agric Food Chem; 2013 Jun; 61(22):5189-206. PubMed ID: 23675852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution and Fungicide Sensitivity of Fungal Pathogens Causing Anthracnose-like Lesions on Tomatoes Grown in Ohio.
    Chapin LJG; Wang Y; Lutton E; Gardener BBM
    Plant Dis; 2006 Apr; 90(4):397-403. PubMed ID: 30786584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and mycotoxigenic capacity of fungi associated with pre- and postharvest fruit rots of pomegranates in Greece and Cyprus.
    Kanetis L; Testempasis S; Goulas V; Samuel S; Myresiotis C; Karaoglanidis GS
    Int J Food Microbiol; 2015 Sep; 208():84-92. PubMed ID: 26057112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Fungicide Mobility and Application Timing on the Management of Grape Powdery Mildew.
    Warneke B; Thiessen LD; Mahaffee WF
    Plant Dis; 2020 Apr; 104(4):1167-1174. PubMed ID: 32053475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First Report of Aspergillus carbonarius Causing Sour Rot of Table Grapes (Vitis vinifera) in California.
    Rooney-Latham S; Janousek CN; Eskalen A; Gubler WD
    Plant Dis; 2008 Apr; 92(4):651. PubMed ID: 30769622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Year, Location, and Variety Impact on Grape-Associated Mycobiota of Arkansas-Grown Wine Grapes for Wine Production.
    Cureau N; Threlfall R; Marasini D; Lavefve L; Carbonero F
    Microb Ecol; 2021 Nov; 82(4):845-858. PubMed ID: 33665722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contamination by moulds of grape berries in Slovakia.
    Mikusová P; Ritieni A; Santini A; Juhasová G; Srobárová A
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 May; 27(5):738-47. PubMed ID: 20349371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epiphytic bacteria from withered grapes and their antagonistic effects on grape-rotting fungi.
    Lorenzini M; Zapparoli G
    Int J Food Microbiol; 2020 Apr; 319():108505. PubMed ID: 31911210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epiphytic fungal community in Vitis vinifera of the Portuguese wine regions.
    Oliveira M; Arenas M; Lage O; Cunha M; Amorim MI
    Lett Appl Microbiol; 2018 Jan; 66(1):93-102. PubMed ID: 29139139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation, identification and selection of antagonistic yeast against Alternaria alternata infection and tenuazonic acid production in wine grapes from Argentina.
    Prendes LP; Merín MG; Fontana AR; Bottini RA; Ramirez ML; Morata de Ambrosini VI
    Int J Food Microbiol; 2018 Feb; 266():14-20. PubMed ID: 29156243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fungicide Use Patterns in Select United States Wine Grape Production Regions.
    Oliver C; Cooper M; Ivey ML; Brannen P; Miles T; Lowder S; Mahaffee W; Moyer MM
    Plant Dis; 2024 Jan; 108(1):104-112. PubMed ID: 37486275
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Esterio M; Osorio-Navarro C; Carreras C; Azócar M; Copier C; Estrada V; Rubilar M; Auger J
    Plant Dis; 2020 Sep; 104(9):2324-2329. PubMed ID: 32609075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.