These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33656560)

  • 1. How a dynamic optical system maintains image quality: Self-adjustment of the human eye.
    Józwik A; Asejczyk-Widlicka M; Kurzynowski P; Pierscionek BK
    J Vis; 2021 Mar; 21(3):6. PubMed ID: 33656560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic biometry of the anterior segment during accommodation imaged by optical coherence tomography.
    Zhu D; Shao Y; Leng L; Xu Z; Wang J; Lu F; Shen M
    Eye Contact Lens; 2014 Jul; 40(4):232-8. PubMed ID: 24901975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Relationship Between High-Order Aberration and Anterior Ocular Biometry During Accommodation in Young Healthy Adults.
    Ke B; Mao X; Jiang H; He J; Liu C; Li M; Yuan Y; Wang J
    Invest Ophthalmol Vis Sci; 2017 Nov; 58(13):5628-5635. PubMed ID: 29094166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully automated biometry of in situ intraocular lenses using long scan depth spectral-domain optical coherence tomography.
    Chen Q; Leng L; Zhu D; Wang Y; Shao Y; Wang J; Lu F; Shen M
    Eye Contact Lens; 2014 Jan; 40(1):37-45. PubMed ID: 24335453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous measurement of objective refraction, accommodation response and axial length of the human eye.
    Alderson A; Mankowska A; Cufflin MP; Mallen EA
    Ophthalmic Physiol Opt; 2011 Jan; 31(1):100-8. PubMed ID: 21197803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring ocular aberrations with a schematic human eye model.
    Smith G; Bedggood P; Ashman R; Daaboul M; Metha A
    Optom Vis Sci; 2008 May; 85(5):330-40. PubMed ID: 18451737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ocular biometric changes with different accommodative stimuli using swept-source optical coherence tomography.
    Ferrer-Blasco T; Esteve-Taboada JJ; Monsálvez-Romín D; Aloy MA; Adsuara JE; Cerdá-Durán P; Montés-Micó R
    Int Ophthalmol; 2019 Feb; 39(2):303-310. PubMed ID: 29260498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic accommodative changes in rhesus monkey eyes assessed with A-scan ultrasound biometry.
    Vilupuru AS; Glasser A
    Optom Vis Sci; 2003 May; 80(5):383-94. PubMed ID: 12771664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Time Measurement of Dynamic Changes of Anterior Segment Biometry and Wavefront Aberrations During Accommodation.
    Zhu D; Shao Y; Peng Y; Chen Q; Wang J; Lu F; Shen M
    Eye Contact Lens; 2016 Sep; 42(5):322-7. PubMed ID: 26398578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association between axial length and in vivo human crystalline lens biometry during accommodation: a swept-source optical coherence tomography study.
    Shoji T; Kato N; Ishikawa S; Ibuki H; Yamada N; Kimura I; Shinoda K
    Jpn J Ophthalmol; 2020 Jan; 64(1):93-101. PubMed ID: 31760515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anterior Segment Biometry of the Accommodating Intraocular Lens and its Relationship With the Amplitude of Accommodation.
    Leng L; Chen Q; Yuan Y; Hu D; Zhu D; Wang J; Yu A; Lu F; Shen M
    Eye Contact Lens; 2017 Mar; 43(2):123-129. PubMed ID: 26974533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optically inspired biomechanical model of the human eyeball.
    Sródka W; Iskander DR
    J Biomed Opt; 2008; 13(4):044034. PubMed ID: 19021361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accommodation: The role of the external muscles of the eye: A consideration of refractive errors in relation to extraocular malfunction.
    Hargrave BK
    Med Hypotheses; 2014 Nov; 83(5):607-13. PubMed ID: 25193332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overview of Objective Methods for Assessing Dynamic Changes in Optical Quality.
    Koh S; Higashiura R; Maeda N
    Eye Contact Lens; 2016 Sep; 42(5):333-8. PubMed ID: 26783977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opto-mechanical self-adjustment model of the human eye.
    Shahiri M; Jóźwik A; Asejczyk M
    Biomed Opt Express; 2023 May; 14(5):1923-1944. PubMed ID: 37206139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulation of intraocular pressure for studying the effects on accommodation.
    He L; Wendt M; Glasser A
    Exp Eye Res; 2012 Sep; 102():76-84. PubMed ID: 22814297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Accommodative Response Using Paraxial Schematic Eye Models.
    Ramasubramanian V; Glasser A
    Optom Vis Sci; 2016 Jul; 93(7):692-704. PubMed ID: 27092928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of accommodation assessed by change in precisely registered ocular images associated with concurrent change in auto-refraction.
    Grzybowski A; Schachar RA; Gaca-Wysocka M; Schachar IH; Kamangar F; Pierscionek BK
    Graefes Arch Clin Exp Ophthalmol; 2018 Feb; 256(2):395-402. PubMed ID: 29147767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study for accommodating the human crystalline lens by finite element simulation.
    Liu Z; Wang B; Xu X; Wang C
    Comput Med Imaging Graph; 2006; 30(6-7):371-6. PubMed ID: 17095189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accommodation and the dynamics of the steady-state intraocular pressure.
    ARMALY MF; JEPSON NC
    Invest Ophthalmol; 1962 Aug; 1():480-3. PubMed ID: 13862325
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.