These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 33656573)

  • 21. The effect of sensory feedback topology on the entrainment of a neural oscillator with a compliant foil for swimming systems.
    Carryon GN; Tangorra JL
    Bioinspir Biomim; 2020 Jun; 15(4):046013. PubMed ID: 32059194
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Asymmetric operation of the locomotor central pattern generator in the neonatal mouse spinal cord.
    Endo T; Kiehn O
    J Neurophysiol; 2008 Dec; 100(6):3043-54. PubMed ID: 18829847
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oscillatory neural networks.
    Selverston AI; Moulins M
    Annu Rev Physiol; 1985; 47():29-48. PubMed ID: 2986532
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fuzzy neuronal model of motor control inspired by cerebellar pathways to online and gradually learn inverse biomechanical functions in the presence of delay.
    Salimi-Badr A; Ebadzadeh MM; Darlot C
    Biol Cybern; 2017 Dec; 111(5-6):421-438. PubMed ID: 28993878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensory feedback mechanism underlying entrainment of central pattern generator to mechanical resonance.
    Iwasaki T; Zheng M
    Biol Cybern; 2006 Apr; 94(4):245-61. PubMed ID: 16404611
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling.
    Huang HJ; Ferris DP
    J Neuroeng Rehabil; 2010 Dec; 7():59. PubMed ID: 21143960
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Entrainment, instability, quasi-periodicity, and chaos in a compound neural oscillator.
    Matsugu M; Duffin J; Poon CS
    J Comput Neurosci; 1998 Mar; 5(1):35-51. PubMed ID: 9540048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A modeling exploration of how synaptic feedback to descending projection neurons shapes the activity of an oscillatory network.
    Kintos N; Nadim F
    SIAM J Appl Dyn Syst; 2014 Aug; 13(3):1239-1269. PubMed ID: 25419188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chapter 10--a hierarchical perspective on rhythm generation for locomotor control.
    Yakovenko S
    Prog Brain Res; 2011; 188():151-66. PubMed ID: 21333808
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resonance tuning in a neuro-musculo-skeletal model of the forearm.
    Verdaasdonk BW; Koopman HF; Van der Helm FC
    Biol Cybern; 2007 Feb; 96(2):165-80. PubMed ID: 17077977
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulation of circuit feedback specifies motor circuit output.
    Blitz DM; Nusbaum MP
    J Neurosci; 2012 Jul; 32(27):9182-93. PubMed ID: 22764227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predictive and reactive tuning of the locomotor CPG.
    Prochazka A; Yakovenko S
    Integr Comp Biol; 2007 Oct; 47(4):474-81. PubMed ID: 21672856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The contribution of sensory inputs to the pattern generation of breathing.
    von Euler C
    Can J Physiol Pharmacol; 1981 Jul; 59(7):700-6. PubMed ID: 6274493
    [TBL] [Abstract][Full Text] [Related]  

  • 34. State-dependent rhythmogenesis and frequency control in a half-center locomotor CPG.
    Ausborn J; Snyder AC; Shevtsova NA; Rybak IA; Rubin JE
    J Neurophysiol; 2018 Jan; 119(1):96-117. PubMed ID: 28978767
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A proprioceptive neuromechanical theory of crawling.
    Paoletti P; Mahadevan L
    Proc Biol Sci; 2014 Sep; 281(1790):. PubMed ID: 25030987
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A phase-reduced neuro-mechanical model for insect locomotion: feed-forward stability and proprioceptive feedback.
    Proctor J; Kukillaya RP; Holmes P
    Philos Trans A Math Phys Eng Sci; 2010 Nov; 368(1930):5087-104. PubMed ID: 20921014
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robustness, flexibility, and sensitivity in a multifunctional motor control model.
    Lyttle DN; Gill JP; Shaw KM; Thomas PJ; Chiel HJ
    Biol Cybern; 2017 Feb; 111(1):25-47. PubMed ID: 28004255
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An electrically coupled pioneer circuit enables motor development via proprioceptive feedback in Drosophila embryos.
    Zeng X; Komanome Y; Kawasaki T; Inada K; Jonaitis J; Pulver SR; Kazama H; Nose A
    Curr Biol; 2021 Dec; 31(23):5327-5340.e5. PubMed ID: 34666002
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A dynamical systems analysis of afferent control in a neuromechanical model of locomotion: II. Phase asymmetry.
    Spardy LE; Markin SN; Shevtsova NA; Prilutsky BI; Rybak IA; Rubin JE
    J Neural Eng; 2011 Dec; 8(6):065004. PubMed ID: 22058275
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An optimality principle for locomotor central pattern generators.
    Ryu HX; Kuo AD
    Sci Rep; 2021 Jun; 11(1):13140. PubMed ID: 34162903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.