These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33656677)

  • 1. Co-immunoprecipitation Assay for Blue Light-Dependent Protein Interactions in Plants.
    Zhang J; He S
    Methods Mol Biol; 2021; 2297():141-146. PubMed ID: 33656677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semi-In-Vivo Pull-Down Assay for Blue Light-Dependent Protein Interactions.
    Li X; Liu Y; Liu H
    Methods Mol Biol; 2021; 2297():161-166. PubMed ID: 33656680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling.
    Holtkotte X; Ponnu J; Ahmad M; Hoecker U
    PLoS Genet; 2017 Oct; 13(10):e1007044. PubMed ID: 28991901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A CRY-BIC negative-feedback circuitry regulating blue light sensitivity of Arabidopsis.
    Wang X; Wang Q; Han YJ; Liu Q; Gu L; Yang Z; Su J; Liu B; Zuo Z; He W; Wang J; Liu B; Matsui M; Kim JI; Oka Y; Lin C
    Plant J; 2017 Nov; 92(3):426-436. PubMed ID: 28833729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation.
    Shalitin D; Yang H; Mockler TC; Maymon M; Guo H; Whitelam GC; Lin C
    Nature; 2002 Jun; 417(6890):763-7. PubMed ID: 12066190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical-Induced Inhibition of Blue Light-Mediated Seedling Development Caused by Disruption of Upstream Signal Transduction Involving Cryptochromes in Arabidopsis thaliana.
    Ong WD; Okubo-Kurihara E; Kurihara Y; Shimada S; Makita Y; Kawashima M; Honda K; Kondoh Y; Watanabe N; Osada H; Cutler SR; Sudesh K; Matsui M
    Plant Cell Physiol; 2017 Jan; 58(1):95-105. PubMed ID: 28011868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular cloning of cryptochrome 1 from apple and its functional characterization in Arabidopsis.
    Li YY; Mao K; Zhao C; Zhang RF; Zhao XY; Zhang HL; Shu HR; Zhao YJ
    Plant Physiol Biochem; 2013 Jun; 67():169-77. PubMed ID: 23570872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoactivation and inactivation of Arabidopsis cryptochrome 2.
    Wang Q; Zuo Z; Wang X; Gu L; Yoshizumi T; Yang Z; Yang L; Liu Q; Liu W; Han YJ; Kim JI; Liu B; Wohlschlegel JA; Matsui M; Oka Y; Lin C
    Science; 2016 Oct; 354(6310):343-347. PubMed ID: 27846570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-terminal domain-mediated homodimerization is required for photoreceptor activity of Arabidopsis CRYPTOCHROME 1.
    Sang Y; Li QH; Rubio V; Zhang YC; Mao J; Deng XW; Yang HQ
    Plant Cell; 2005 May; 17(5):1569-84. PubMed ID: 15805487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of In Planta Protein-Protein Interactions Using IP-MS.
    Jamge S; Angenent GC; Bemer M
    Methods Mol Biol; 2018; 1675():315-329. PubMed ID: 29052199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting Blue Light-Dependent Protein-Protein Interactions by LexA-Based Yeast Two-Hybrid Assay.
    Hao X; Li L
    Methods Mol Biol; 2021; 2297():147-154. PubMed ID: 33656678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protoplast System for Studying Blue-Light-Dependent Formation of Cryptochrome Photobody.
    Lyu X; Li H; Liu B
    Methods Mol Biol; 2021; 2297():105-113. PubMed ID: 33656674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blue-light dependent reactive oxygen species formation by Arabidopsis cryptochrome may define a novel evolutionarily conserved signaling mechanism.
    Consentino L; Lambert S; Martino C; Jourdan N; Bouchet PE; Witczak J; Castello P; El-Esawi M; Corbineau F; d'Harlingue A; Ahmad M
    New Phytol; 2015 Jun; 206(4):1450-62. PubMed ID: 25728686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple interactions between cryptochrome and phototropin blue-light signalling pathways in Arabidopsis thaliana.
    Kang B; Grancher N; Koyffmann V; Lardemer D; Burney S; Ahmad M
    Planta; 2008 Apr; 227(5):1091-9. PubMed ID: 18183416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1.
    Yang HQ; Tang RH; Cashmore AR
    Plant Cell; 2001 Dec; 13(12):2573-87. PubMed ID: 11752373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis.
    Liu H; Yu X; Li K; Klejnot J; Yang H; Lisiero D; Lin C
    Science; 2008 Dec; 322(5907):1535-9. PubMed ID: 18988809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid blue-light-mediated induction of protein interactions in living cells.
    Kennedy MJ; Hughes RM; Peteya LA; Schwartz JW; Ehlers MD; Tucker CL
    Nat Methods; 2010 Dec; 7(12):973-5. PubMed ID: 21037589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstituting Arabidopsis CRY2 Signaling Pathway in Mammalian Cells Reveals Regulation of Transcription by Direct Binding of CRY2 to DNA.
    Yang L; Mo W; Yu X; Yao N; Zhou Z; Fan X; Zhang L; Piao M; Li S; Yang D; Lin C; Zuo Z
    Cell Rep; 2018 Jul; 24(3):585-593.e4. PubMed ID: 30021157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geomagnetic field impacts on cryptochrome and phytochrome signaling.
    Agliassa C; Narayana R; Christie JM; Maffei ME
    J Photochem Photobiol B; 2018 Aug; 185():32-40. PubMed ID: 29864723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-dependent regulation of plant growth and development.
    Lin C; Ahmad M; Cashmore AR
    Plant J; 1996 Nov; 10(5):893-902. PubMed ID: 8953250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.