These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 33656774)

  • 1. An Electron Acceptor Analogue for Lowering Trap Density in Organic Solar Cells.
    Zhang Y; Cai G; Li Y; Zhang Z; Li T; Zuo X; Lu X; Lin Y
    Adv Mater; 2021 Apr; 33(14):e2008134. PubMed ID: 33656774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing Trap Density in Organic Solar Cells via Extending the Fused Ring Donor Unit of an A-D-A-Type Nonfullerene Acceptor for Over 17% Efficiency.
    Zhou J; He D; Li Y; Huang F; Zhang J; Zhang C; Yuan Y; Lin Y; Wang C; Zhao F
    Adv Mater; 2023 Jan; 35(3):e2207336. PubMed ID: 36305597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the Trade-Off between Device Performance and Energy Loss in Nonfullerene Organic Solar Cells.
    Hong L; Yao H; Yu R; Xu Y; Gao B; Ge Z; Hou J
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):29124-29131. PubMed ID: 31331162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Efficiency Nonfullerene Organic Solar Cells Enabled by 1000 nm Thick Active Layers with a Low Trap-State Density.
    Ma L; Zhang S; Yao H; Xu Y; Wang J; Zu Y; Hou J
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18777-18784. PubMed ID: 32233417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trap-Filling of ZnO Buffer Layer for Improved Efficiencies of Organic Solar Cells.
    Li M; Li J; Yu L; Zhang Y; Dai Y; Chen R; Huang W
    Front Chem; 2020; 8():399. PubMed ID: 32528929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Balanced Partnership between Donor and Acceptor Components in Nonfullerene Organic Solar Cells with >12% Efficiency.
    Lin Y; Zhao F; Prasad SKK; Chen JD; Cai W; Zhang Q; Chen K; Wu Y; Ma W; Gao F; Tang JX; Wang C; You W; Hodgkiss JM; Zhan X
    Adv Mater; 2018 Apr; 30(16):e1706363. PubMed ID: 29513373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial and Bulk Nanostructures Control Loss of Charges in Organic Solar Cells.
    Naveed HB; Zhou K; Ma W
    Acc Chem Res; 2019 Oct; 52(10):2904-2915. PubMed ID: 31577121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fullerene/Non-fullerene Alloy for High-Performance All-Small-Molecule Organic Solar Cells.
    Privado M; Guijarro FG; de la Cruz P; Singhal R; Langa F; Sharma GD
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6461-6469. PubMed ID: 33524254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fused-Ring Electron Acceptors for Photovoltaics and Beyond.
    Wang J; Zhan X
    Acc Chem Res; 2021 Jan; 54(1):132-143. PubMed ID: 33284599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Naphthodithiophene-Based Nonfullerene Acceptor for High-Performance Organic Photovoltaics: Effect of Extended Conjugation.
    Zhu J; Ke Z; Zhang Q; Wang J; Dai S; Wu Y; Xu Y; Lin Y; Ma W; You W; Zhan X
    Adv Mater; 2018 Jan; 30(2):. PubMed ID: 29168900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential of Nonfullerene Small Molecules with High Photovoltaic Performance.
    Li W; Yao H; Zhang H; Li S; Hou J
    Chem Asian J; 2017 Sep; 12(17):2160-2171. PubMed ID: 28574185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the Performance of Polymer Solar Cells via Core Engineering of NIR-Absorbing Electron Acceptors.
    Dai S; Li T; Wang W; Xiao Y; Lau TK; Li Z; Liu K; Lu X; Zhan X
    Adv Mater; 2018 Apr; 30(15):e1706571. PubMed ID: 29512214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ternary Organic Solar Cells with Efficiency >16.5% Based on Two Compatible Nonfullerene Acceptors.
    Song J; Li C; Zhu L; Guo J; Xu J; Zhang X; Weng K; Zhang K; Min J; Hao X; Zhang Y; Liu F; Sun Y
    Adv Mater; 2019 Dec; 31(52):e1905645. PubMed ID: 31736170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Ternary Organic Solar Cells with Two Compatible Non-Fullerene Materials as One Alloyed Acceptor.
    An Q; Zhang J; Gao W; Qi F; Zhang M; Ma X; Yang C; Huo L; Zhang F
    Small; 2018 Nov; 14(45):e1802983. PubMed ID: 30303607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selenium Heterocyclic Electron Acceptor with Small Urbach Energy for As-Cast High-Performance Organic Solar Cells.
    Zhang Z; Li Y; Cai G; Zhang Y; Lu X; Lin Y
    J Am Chem Soc; 2020 Nov; 142(44):18741-18745. PubMed ID: 33085460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A New Nonfullerene Acceptor with Near Infrared Absorption for High Performance Ternary-Blend Organic Solar Cells with Efficiency over 13.
    Gao HH; Sun Y; Wan X; Ke X; Feng H; Kan B; Wang Y; Zhang Y; Li C; Chen Y
    Adv Sci (Weinh); 2018 Jun; 5(6):1800307. PubMed ID: 29938192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Performance Ternary Organic Solar Cells with Controllable Morphology via Sequential Layer-by-Layer Deposition.
    Ren M; Zhang G; Chen Z; Xiao J; Jiao X; Zou Y; Yip HL; Cao Y
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):13077-13086. PubMed ID: 32079401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ternary Organic Solar Cells Based on a Wide-Bandgap Polymer with Enhanced Power Conversion Efficiencies.
    Hwang H; Sin DH; Park C; Cho K
    Sci Rep; 2019 Aug; 9(1):12081. PubMed ID: 31427610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fused Tris(thienothiophene)-Based Electron Acceptor with Strong Near-Infrared Absorption for High-Performance As-Cast Solar Cells.
    Li T; Dai S; Ke Z; Yang L; Wang J; Yan C; Ma W; Zhan X
    Adv Mater; 2018 Mar; 30(10):. PubMed ID: 29334151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Junction Binary-Blend Nonfullerene Polymer Solar Cells with 12.1% Efficiency.
    Zhao F; Dai S; Wu Y; Zhang Q; Wang J; Jiang L; Ling Q; Wei Z; Ma W; You W; Wang C; Zhan X
    Adv Mater; 2017 May; 29(18):. PubMed ID: 28295734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.