These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 33656883)

  • 1. Redox-Responsive, Reconfigurable All-Liquid Constructs.
    Sun H; Li M; Li L; Liu T; Luo Y; Russell TP; Shi S
    J Am Chem Soc; 2021 Mar; 143(10):3719-3722. PubMed ID: 33656883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular Interfaces and Reconfigurable Liquids Derived from Cucurbit[7]uril Surfactants.
    Sun S; Luo Y; Yang Y; Chen J; Li S; Wu Z; Shi S
    Small; 2022 Nov; 18(44):e2204182. PubMed ID: 36148850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoresponsive Structured Liquids Enabled by Molecular Recognition at Liquid-Liquid Interfaces.
    Sun H; Li L; Russell TP; Shi S
    J Am Chem Soc; 2020 May; 142(19):8591-8595. PubMed ID: 32324996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconfigurable Liquids Constructed by Pillar[6]arene-Based Nanoparticle Surfactants.
    Luo Y; Yang Y; Wang Y; Wu Z; Russell TP; Shi S
    Angew Chem Int Ed Engl; 2022 Aug; 61(33):e202207199. PubMed ID: 35699457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconfigurable Liquids Stabilized by DNA Surfactants.
    Qian B; Shi S; Wang H; Russell TP
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):13551-13557. PubMed ID: 32091870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyoxometalate-Surfactant Assemblies: Responsiveness to Orthogonal Stimuli.
    Xia Z; Lin CG; Yang Y; Wang Y; Wu Z; Song YF; Russell TP; Shi S
    Angew Chem Int Ed Engl; 2022 Jun; 61(25):e202203741. PubMed ID: 35384203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic formation and stabilization of oil-in-water emulsions by a weakly interacting mixture of zwitterionic surfactant and silica nanoparticles.
    Worthen AJ; Foster LM; Dong J; Bollinger JA; Peterman AH; Pastora LE; Bryant SL; Truskett TM; Bielawski CW; Johnston KP
    Langmuir; 2014 Feb; 30(4):984-94. PubMed ID: 24409832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responsive Interfacial Assemblies Based on Charge-Transfer Interactions.
    Sun S; Xie C; Chen J; Yang Y; Li H; Russell TP; Shi S
    Angew Chem Int Ed Engl; 2021 Dec; 60(50):26363-26367. PubMed ID: 34687127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial Assembly and Jamming of Soft Nanoparticle Surfactants into Colloidosomes and Structured Liquids.
    Wang B; Yin B; Yu H; Zhang Z; Wang G; Shi S; Gu X; Yang W; Tang BZ; Russell TP
    ACS Appl Mater Interfaces; 2022 Dec; 14(48):54287-54292. PubMed ID: 36440677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Assembly and Jamming of Nanoparticle Surfactants at Liquid-Liquid Interfaces.
    Wang B; Yin B; Zhang Z; Yin Y; Yang Y; Wang H; Russell TP; Shi S
    Angew Chem Int Ed Engl; 2022 Mar; 61(10):e202114936. PubMed ID: 34964229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconfigurable Printed Liquids.
    Forth J; Liu X; Hasnain J; Toor A; Miszta K; Shi S; Geissler PL; Emrick T; Helms BA; Russell TP
    Adv Mater; 2018 Apr; 30(16):e1707603. PubMed ID: 29573293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable elastic modulus of nanoparticle monolayer films by host-guest chemistry.
    Jeong Y; Chen YC; Turksoy MK; Rana S; Tonga GY; Creran B; Sanyal A; Crosby AJ; Rotello VM
    Adv Mater; 2014 Aug; 26(29):5056-61. PubMed ID: 24889993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH- and Redox-Responsive Pickering Emulsions Based on Cellulose Nanocrystal Surfactants.
    Yang Y; Sun H; Wang M; Li M; Zhang Z; Russell TP; Shi S
    Angew Chem Int Ed Engl; 2023 Apr; 62(16):e202218440. PubMed ID: 36781384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of lateral heterogeneity in mixed surfactant-stabilized interfaces on the oxidation of unsaturated lipids in oil-in-water emulsions.
    Berton C; Genot C; Guibert D; Ropers MH
    J Colloid Interface Sci; 2012 Jul; 377(1):244-50. PubMed ID: 22525896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fundamental Differences in Emulsification Principle between Three-phase Emulsification and Conventional Methods.
    Miyasaka K; Imai Y; Tajima K
    J Oleo Sci; 2020 Dec; 69(12):1551-1560. PubMed ID: 33177281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pickering emulsions and capsules stabilized by wool powder particles.
    Hikima T; Nonomura Y
    J Oleo Sci; 2011; 60(7):351-4. PubMed ID: 21701098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective retardation of perfume oil evaporation from oil-in-water emulsions stabilized by either surfactant or nanoparticles.
    Binks BP; Fletcher PD; Holt BL; Beaussoubre P; Wong K
    Langmuir; 2010 Dec; 26(23):18024-30. PubMed ID: 21067125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular redox-responsive substrate carrier activity of a ferrocenyl Janus device.
    Mu S; Ling Q; Liu X; Ruiz J; Astruc D; Gu H
    J Inorg Biochem; 2019 Apr; 193():31-41. PubMed ID: 30669064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gated Molecular Diffusion at Liquid-Liquid Interfaces.
    Li L; Sun H; Li M; Yang Y; Russell TP; Shi S
    Angew Chem Int Ed Engl; 2021 Aug; 60(32):17394-17397. PubMed ID: 34046998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors affecting lycopene oxidation in oil-in-water emulsions.
    Boon CS; Xu Z; Yue X; McClements DJ; Weiss J; Decker EA
    J Agric Food Chem; 2008 Feb; 56(4):1408-14. PubMed ID: 18237137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.