These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

474 related articles for article (PubMed ID: 33657255)

  • 21. hiPSC-derived NSCs effectively promote the functional recovery of acute spinal cord injury in mice.
    Kong D; Feng B; Amponsah AE; He J; Guo R; Liu B; Du X; Liu X; Zhang S; Lv F; Ma J; Cui H
    Stem Cell Res Ther; 2021 Mar; 12(1):172. PubMed ID: 33706803
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transplantation of a Peripheral Nerve with Neural Stem Cells Plus Lithium Chloride Injection Promote the Recovery of Rat Spinal Cord Injury.
    Zhang LQ; Zhang WM; Deng L; Xu ZX; Lan WB; Lin JH
    Cell Transplant; 2018 Mar; 27(3):471-484. PubMed ID: 29756516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synergistic effect of neural stem cells and olfactory ensheathing cells on repair of adult rat spinal cord injury.
    Wang G; Ao Q; Gong K; Zuo H; Gong Y; Zhang X
    Cell Transplant; 2010; 19(10):1325-37. PubMed ID: 20447345
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metformin enhances endogenous neural stem cells proliferation, neuronal differentiation, and inhibits ferroptosis through activating AMPK pathway after spinal cord injury.
    Xing C; Liu S; Wang L; Ma H; Zhou M; Zhong H; Zhu S; Wu Q; Ning G
    J Transl Med; 2024 Aug; 22(1):723. PubMed ID: 39103875
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Promoting 3D neuronal differentiation in hydrogel for spinal cord regeneration.
    Zhou P; Xu P; Guan J; Zhang C; Chang J; Yang F; Xiao H; Sun H; Zhang Z; Wang M; Hu J; Mao Y
    Colloids Surf B Biointerfaces; 2020 Oct; 194():111214. PubMed ID: 32599502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transplantation of Wnt5a-modified NSCs promotes tissue repair and locomotor functional recovery after spinal cord injury.
    Li X; Peng Z; Long L; Lu X; Zhu K; Tuo Y; Chen N; Zhao X; Wang L; Wan Y
    Exp Mol Med; 2020 Dec; 52(12):2020-2033. PubMed ID: 33311637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coaxial 3D printing of hierarchical structured hydrogel scaffolds for on-demand repair of spinal cord injury.
    Li Y; Cheng S; Wen H; Xiao L; Deng Z; Huang J; Zhang Z
    Acta Biomater; 2023 Sep; 168():400-415. PubMed ID: 37479156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of controlled release of neurotrophin-3 from PCLA scaffolds on the survival and neuronal differentiation of transplanted neural stem cells in a rat spinal cord injury model.
    Tang S; Liao X; Shi B; Qu Y; Huang Z; Lin Q; Guo X; Pei F
    PLoS One; 2014; 9(9):e107517. PubMed ID: 25215612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnetic Nanoparticles and Methylprednisolone Based Physico-Chemical Bifunctional Neural Stem Cells Delivery System for Spinal Cord Injury Repair.
    Zhang W; Liu M; Ren J; Han S; Zhou X; Zhang D; Guo X; Feng H; Ye L; Feng S; Song X; Jin L; Wei Z
    Adv Sci (Weinh); 2024 Jun; 11(21):e2308993. PubMed ID: 38516757
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D collagen porous scaffold carrying PLGA-PTX/SDF-1α recruits and promotes neural stem cell differentiation for spinal cord injury repair.
    Li Z; Xu P; Shang L; Ma B; Zhang H; Fu L; Ou Y; Mao Y
    J Biomater Sci Polym Ed; 2023 Dec; 34(17):2332-2355. PubMed ID: 37566099
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transplantation of Recombinant Vascular Endothelial Growth Factor (VEGF)189-Neural Stem Cells Downregulates Transient Receptor Potential Vanilloid 1 (TRPV1) and Improves Motor Outcome in Spinal Cord Injury.
    Zeng Y; Han H; Tang B; Chen J; Mao D; Xiong M
    Med Sci Monit; 2018 Feb; 24():1089-1096. PubMed ID: 29466323
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transplantation of human neural stem cells transduced with Olig2 transcription factor improves locomotor recovery and enhances myelination in the white matter of rat spinal cord following contusive injury.
    Hwang DH; Kim BG; Kim EJ; Lee SI; Joo IS; Suh-Kim H; Sohn S; Kim SU
    BMC Neurosci; 2009 Sep; 10():117. PubMed ID: 19772605
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rewiring the spinal cord: Direct and indirect strategies.
    Dell'Anno MT; Strittmatter SM
    Neurosci Lett; 2017 Jun; 652():25-34. PubMed ID: 28007647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bridging the gap with functional collagen scaffolds: tuning endogenous neural stem cells for severe spinal cord injury repair.
    Li X; Dai J
    Biomater Sci; 2018 Jan; 6(2):265-271. PubMed ID: 29265131
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prior Treatment with Anti-High Mobility Group Box-1 Antibody Boosts Human Neural Stem Cell Transplantation-Mediated Functional Recovery After Spinal Cord Injury.
    Uezono N; Zhu Y; Fujimoto Y; Yasui T; Matsuda T; Nakajo M; Abematsu M; Setoguchi T; Mori S; Takahashi HK; Komiya S; Nishibori M; Nakashima K
    Stem Cells; 2018 May; 36(5):737-750. PubMed ID: 29517828
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Co-transplantation of mesenchymal and neural stem cells and overexpressing stromal-derived factor-1 for treating spinal cord injury.
    Stewart AN; Kendziorski G; Deak ZM; Brown DJ; Fini MN; Copely KL; Rossignol J; Dunbar GL
    Brain Res; 2017 Oct; 1672():91-105. PubMed ID: 28734802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced Neural Regeneration with a Concomitant Treatment of Framework Nucleic Acid and Stem Cells in Spinal Cord Injury.
    Ma W; Zhan Y; Zhang Y; Xie X; Mao C; Lin Y
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2095-2106. PubMed ID: 31845577
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Human stem cell-derived neurons and neural circuitry therapeutics: Next frontier in spinal cord injury repair.
    Paredes-Espinosa MB; Paluh JL
    Exp Biol Med (Maywood); 2022 Dec; 247(23):2142-2151. PubMed ID: 35974701
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cetuximab and Taxol co-modified collagen scaffolds show combination effects for the repair of acute spinal cord injury.
    Fan C; Li X; Zhao Y; Xiao Z; Xue W; Sun J; Li X; Zhuang Y; Chen Y; Dai J
    Biomater Sci; 2018 Jun; 6(7):1723-1734. PubMed ID: 29845137
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Concomitant use of mesenchymal stem cells and neural stem cells for treatment of spinal cord injury: A combo cell therapy approach.
    Hosseini SM; Sani M; Haider KH; Dorvash M; Ziaee SM; Karimi A; Namavar MR
    Neurosci Lett; 2018 Mar; 668():138-146. PubMed ID: 29317311
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.