These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
474 related articles for article (PubMed ID: 33657255)
41. Co-transplantation of bFGF-expressing amniotic epithelial cells and neural stem cells promotes functional recovery in spinal cord-injured rats. Meng XT; Li C; Dong ZY; Liu JM; Li W; Liu Y; Xue H; Chen D Cell Biol Int; 2008 Dec; 32(12):1546-58. PubMed ID: 18849003 [TBL] [Abstract][Full Text] [Related]
42. Human induced pluripotent stem cell/embryonic stem cell-derived pyramidal neuronal precursors show safety and efficacy in a rat spinal cord injury model. Li M; Qi B; Li Q; Zheng T; Wang Y; Liu B; Guan Y; Bai Y; Jian F; Xu ZD; Xu Q; Chen Z Cell Mol Life Sci; 2024 Jul; 81(1):318. PubMed ID: 39073571 [TBL] [Abstract][Full Text] [Related]
43. Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. Abematsu M; Tsujimura K; Yamano M; Saito M; Kohno K; Kohyama J; Namihira M; Komiya S; Nakashima K J Clin Invest; 2010 Sep; 120(9):3255-66. PubMed ID: 20714104 [TBL] [Abstract][Full Text] [Related]
45. Human conditionally immortalized neural stem cells improve locomotor function after spinal cord injury in the rat. Amemori T; Romanyuk N; Jendelova P; Herynek V; Turnovcova K; Prochazka P; Kapcalova M; Cocks G; Price J; Sykova E Stem Cell Res Ther; 2013 Jun; 4(3):68. PubMed ID: 23759119 [TBL] [Abstract][Full Text] [Related]
46. Cograft of neural stem cells and schwann cells overexpressing TrkC and neurotrophin-3 respectively after rat spinal cord transection. Wang JM; Zeng YS; Wu JL; Li Y; Teng YD Biomaterials; 2011 Oct; 32(30):7454-68. PubMed ID: 21783247 [TBL] [Abstract][Full Text] [Related]
47. Stem Cell Transplantation: A Promising Therapy for Spinal Cord Injury. Gong Z; Xia K; Xu A; Yu C; Wang C; Zhu J; Huang X; Chen Q; Li F; Liang C Curr Stem Cell Res Ther; 2020; 15(4):321-331. PubMed ID: 31441733 [TBL] [Abstract][Full Text] [Related]
48. Stem cell-based cell therapy for spinal cord injury. Kim BG; Hwang DH; Lee SI; Kim EJ; Kim SU Cell Transplant; 2007; 16(4):355-64. PubMed ID: 17658126 [TBL] [Abstract][Full Text] [Related]
49. Treatment of a mouse model of spinal cord injury by transplantation of human induced pluripotent stem cell-derived long-term self-renewing neuroepithelial-like stem cells. Fujimoto Y; Abematsu M; Falk A; Tsujimura K; Sanosaka T; Juliandi B; Semi K; Namihira M; Komiya S; Smith A; Nakashima K Stem Cells; 2012 Jun; 30(6):1163-73. PubMed ID: 22419556 [TBL] [Abstract][Full Text] [Related]
50. Transplantation of Neural Stem Cells Loaded in an IGF-1 Bioactive Supramolecular Nanofiber Hydrogel for the Effective Treatment of Spinal Cord Injury. Song P; Han T; Wu Z; Fang H; Liu Y; Ying W; Wang X; Shen C Adv Sci (Weinh); 2024 May; 11(17):e2306577. PubMed ID: 38441409 [TBL] [Abstract][Full Text] [Related]
52. Repair of spinal cord injury with neuronal relays: From fetal grafts to neural stem cells. Bonner JF; Steward O Brain Res; 2015 Sep; 1619():115-23. PubMed ID: 25591483 [TBL] [Abstract][Full Text] [Related]
53. Small molecules combined with collagen hydrogel direct neurogenesis and migration of neural stem cells after spinal cord injury. Yang Y; Fan Y; Zhang H; Zhang Q; Zhao Y; Xiao Z; Liu W; Chen B; Gao L; Sun Z; Xue X; Shu M; Dai J Biomaterials; 2021 Feb; 269():120479. PubMed ID: 33223332 [TBL] [Abstract][Full Text] [Related]
54. Cetuximab modified collagen scaffold directs neurogenesis of injury-activated endogenous neural stem cells for acute spinal cord injury repair. Li X; Zhao Y; Cheng S; Han S; Shu M; Chen B; Chen X; Tang F; Wang N; Tu Y; Wang B; Xiao Z; Zhang S; Dai J Biomaterials; 2017 Aug; 137():73-86. PubMed ID: 28544974 [TBL] [Abstract][Full Text] [Related]
55. The combination of nanoscaffolds and stem cell transplantation: Paving a promising road for spinal cord injury regeneration. Chen X; Wang Y; Zhou G; Hu X; Han S; Gao J Biomed Pharmacother; 2021 Nov; 143():112233. PubMed ID: 34649357 [TBL] [Abstract][Full Text] [Related]
56. Selective killing of spinal cord neural stem cells impairs locomotor recovery in a mouse model of spinal cord injury. Cusimano M; Brambilla E; Capotondo A; De Feo D; Tomasso A; Comi G; D'Adamo P; Muzio L; Martino G J Neuroinflammation; 2018 Feb; 15(1):58. PubMed ID: 29475438 [TBL] [Abstract][Full Text] [Related]
57. Time-dependent changes in the microenvironment of injured spinal cord affects the therapeutic potential of neural stem cell transplantation for spinal cord injury. Nishimura S; Yasuda A; Iwai H; Takano M; Kobayashi Y; Nori S; Tsuji O; Fujiyoshi K; Ebise H; Toyama Y; Okano H; Nakamura M Mol Brain; 2013 Jan; 6():3. PubMed ID: 23298657 [TBL] [Abstract][Full Text] [Related]
58. Grafting Embryonic Raphe Neurons Reestablishes Serotonergic Regulation of Sympathetic Activity to Improve Cardiovascular Function after Spinal Cord Injury. Hou S; Saltos TM; Mironets E; Trueblood CT; Connors TM; Tom VJ J Neurosci; 2020 Feb; 40(6):1248-1264. PubMed ID: 31896670 [TBL] [Abstract][Full Text] [Related]
59. Magnesium Oxide/Poly(l-lactide-co-ε-caprolactone) Scaffolds Loaded with Neural Morphogens Promote Spinal Cord Repair through Targeting the Calcium Influx and Neuronal Differentiation of Neural Stem Cells. Xie J; Li J; Ma J; Li M; Wang X; Fu X; Ma Y; Yang H; Li B; Saijilafu Adv Healthc Mater; 2022 Aug; 11(15):e2200386. PubMed ID: 35587044 [TBL] [Abstract][Full Text] [Related]
60. Neuronal differentiation and inhibition of glial differentiation of murine neural stem cells by pHPMA hydrogel for the repair of injured spinal cord. Rybachuk O; Nesterenko Y; Pinet É; Medvediev V; Yaminsky Y; Tsymbaliuk V Exp Neurol; 2023 Oct; 368():114497. PubMed ID: 37517459 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]