BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 33657379)

  • 1. Topological stress is responsible for the detrimental outcomes of head-on replication-transcription conflicts.
    Lang KS; Merrikh H
    Cell Rep; 2021 Mar; 34(9):108797. PubMed ID: 33657379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [DNA supercoiling and topoisomerases in Escherichia coli].
    Gómez-Eichelmann MC; Camacho-Carranza R
    Rev Latinoam Microbiol; 1995; 37(3):291-304. PubMed ID: 8850348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel symmetric and asymmetric DNA scission determinants for Streptococcus pneumoniae topoisomerase IV and gyrase are clustered at the DNA breakage site.
    Leo E; Gould KA; Pan XS; Capranico G; Sanderson MR; Palumbo M; Fisher LM
    J Biol Chem; 2005 Apr; 280(14):14252-63. PubMed ID: 15659402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. When DNA Topology Turns Deadly - RNA Polymerases Dig in Their R-Loops to Stand Their Ground: New Positive and Negative (Super)Twists in the Replication-Transcription Conflict.
    Kuzminov A
    Trends Genet; 2018 Feb; 34(2):111-120. PubMed ID: 29179918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rates of gyrase supercoiling and transcription elongation control supercoil density in a bacterial chromosome.
    Rovinskiy N; Agbleke AA; Chesnokova O; Pang Z; Higgins NP
    PLoS Genet; 2012; 8(8):e1002845. PubMed ID: 22916023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis of three topoisomerases that regulate DNA supercoiling levels in Chlamydia.
    Orillard E; Tan M
    Mol Microbiol; 2016 Feb; 99(3):484-96. PubMed ID: 26447825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The acidic C-terminal tail of the GyrA subunit moderates the DNA supercoiling activity of Bacillus subtilis gyrase.
    Lanz MA; Farhat M; Klostermeier D
    J Biol Chem; 2014 May; 289(18):12275-85. PubMed ID: 24563461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topoisomerase IV can functionally replace all type 1A topoisomerases in Bacillus subtilis.
    Reuß DR; Faßhauer P; Mroch PJ; Ul-Haq I; Koo BM; Pöhlein A; Gross CA; Daniel R; Brantl S; Stülke J
    Nucleic Acids Res; 2019 Jun; 47(10):5231-5242. PubMed ID: 30957856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Replication Restart after Replication-Transcription Conflicts Requires RecA in Bacillus subtilis.
    Million-Weaver S; Samadpour AN; Merrikh H
    J Bacteriol; 2015 Jul; 197(14):2374-82. PubMed ID: 25939832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations reducing replication from R-loops suppress the defects of growth, chromosome segregation and DNA supercoiling in cells lacking topoisomerase I and RNase HI activity.
    Usongo V; Martel M; Balleydier A; Drolet M
    DNA Repair (Amst); 2016 Apr; 40():1-17. PubMed ID: 26947024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Negative supercoiling of DNA by gyrase is inhibited in Salmonella enterica serovar Typhimurium during adaptation to acid stress.
    Colgan AM; Quinn HJ; Kary SC; Mitchenall LA; Maxwell A; Cameron ADS; Dorman CJ
    Mol Microbiol; 2018 Mar; 107(6):734-746. PubMed ID: 29352745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topoisomerase I Essentiality, DnaA-Independent Chromosomal Replication, and Transcription-Replication Conflict in Escherichia coli.
    Leela JK; Raghunathan N; Gowrishankar J
    J Bacteriol; 2021 Aug; 203(17):e0019521. PubMed ID: 34124945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Coordinated Positive Regulation of Topoisomerase Genes Maintains Topological Homeostasis in Streptomyces coelicolor.
    Szafran MJ; Gongerowska M; Gutkowski P; Zakrzewska-Czerwińska J; Jakimowicz D
    J Bacteriol; 2016 Nov; 198(21):3016-3028. PubMed ID: 27551021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of negative DNA supercoiling: a cascade of DNA-induced conformational changes prepares gyrase for strand passage.
    Gubaev A; Klostermeier D
    DNA Repair (Amst); 2014 Apr; 16():23-34. PubMed ID: 24674625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription facilitated genome-wide recruitment of topoisomerase I and DNA gyrase.
    Ahmed W; Sala C; Hegde SR; Jha RK; Cole ST; Nagaraja V
    PLoS Genet; 2017 May; 13(5):e1006754. PubMed ID: 28463980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The B. subtilis Accessory Helicase PcrA Facilitates DNA Replication through Transcription Units.
    Merrikh CN; Brewer BJ; Merrikh H
    PLoS Genet; 2015 Jun; 11(6):e1005289. PubMed ID: 26070154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of topoisomerase function in bacterial replication fork movement: use of DNA microarrays.
    Khodursky AB; Peter BJ; Schmid MB; DeRisi J; Botstein D; Brown PO; Cozzarelli NR
    Proc Natl Acad Sci U S A; 2000 Aug; 97(17):9419-24. PubMed ID: 10944214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA gyrase with a single catalytic tyrosine can catalyze DNA supercoiling by a nicking-closing mechanism.
    Gubaev A; Weidlich D; Klostermeier D
    Nucleic Acids Res; 2016 Dec; 44(21):10354-10366. PubMed ID: 27557712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A naturally chimeric type IIA topoisomerase in Aquifex aeolicus highlights an evolutionary path for the emergence of functional paralogs.
    Tretter EM; Lerman JC; Berger JM
    Proc Natl Acad Sci U S A; 2010 Dec; 107(51):22055-9. PubMed ID: 21076033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Bacterial Chromosome Structuring Protein Binds Overtwisted DNA to Stimulate Type II Topoisomerases and Enable DNA Replication.
    Guo MS; Haakonsen DL; Zeng W; Schumacher MA; Laub MT
    Cell; 2018 Oct; 175(2):583-597.e23. PubMed ID: 30220456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.