These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 33657473)
1. Finite element analysis on multi-toughening mechanism of microstructure of osteon. Yin D; Chen B; Lin S J Mech Behav Biomed Mater; 2021 May; 117():104408. PubMed ID: 33657473 [TBL] [Abstract][Full Text] [Related]
2. Crack propagation in cortical bone is affected by the characteristics of the cement line: a parameter study using an XFEM interface damage model. Gustafsson A; Wallin M; Khayyeri H; Isaksson H Biomech Model Mechanobiol; 2019 Aug; 18(4):1247-1261. PubMed ID: 30963356 [TBL] [Abstract][Full Text] [Related]
3. The influence of microstructure on crack propagation in cortical bone at the mesoscale. Gustafsson A; Wallin M; Isaksson H J Biomech; 2020 Nov; 112():110020. PubMed ID: 32980752 [TBL] [Abstract][Full Text] [Related]
4. An interface damage model that captures crack propagation at the microscale in cortical bone using XFEM. Gustafsson A; Khayyeri H; Wallin M; Isaksson H J Mech Behav Biomed Mater; 2019 Feb; 90():556-565. PubMed ID: 30472565 [TBL] [Abstract][Full Text] [Related]
5. High-speed X-ray visualization of dynamic crack initiation and propagation in bone. Zhai X; Guo Z; Gao J; Kedir N; Nie Y; Claus B; Sun T; Xiao X; Fezzaa K; Chen WW Acta Biomater; 2019 May; 90():278-286. PubMed ID: 30926579 [TBL] [Abstract][Full Text] [Related]
6. Effect of ageing on microstructure and fracture behavior of cortical bone as determined by experiment and Extended Finite Element Method (XFEM). Yadav RN; Uniyal P; Sihota P; Kumar S; Dhiman V; Goni VG; Sahni D; Bhadada SK; Kumar N Med Eng Phys; 2021 Jul; 93():100-112. PubMed ID: 34154770 [TBL] [Abstract][Full Text] [Related]
7. Cortical bone fracture analysis using XFEM - case study. Idkaidek A; Jasiuk I Int J Numer Method Biomed Eng; 2017 Apr; 33(4):. PubMed ID: 27287280 [TBL] [Abstract][Full Text] [Related]
8. Age-related properties at the microscale affect crack propagation in cortical bone. Gustafsson A; Wallin M; Isaksson H J Biomech; 2019 Oct; 95():109326. PubMed ID: 31526587 [TBL] [Abstract][Full Text] [Related]
9. Effects of Structure Characteristics of Osteocyte Lacunae on Squeeze Damage Resistance of Osteons. Liu Y; Li A; Chen B Cells Tissues Organs; 2019; 208(3-4):142-147. PubMed ID: 32069449 [TBL] [Abstract][Full Text] [Related]
10. On the fracture behavior of cortical bone microstructure: The effects of morphology and material characteristics of bone structural components. Allahyari P; Silani M; Yaghoubi V; Milovanovic P; Schmidt FN; Busse B; Qwamizadeh M J Mech Behav Biomed Mater; 2023 Jan; 137():105530. PubMed ID: 36334581 [TBL] [Abstract][Full Text] [Related]
11. Anisotropic mode-dependent damage of cortical bone using the extended finite element method (XFEM). Feerick EM; Liu XC; McGarry P J Mech Behav Biomed Mater; 2013 Apr; 20():77-89. PubMed ID: 23455165 [TBL] [Abstract][Full Text] [Related]
12. The effect of bone microstructure on the initiation and growth of microcracks. O'Brien FJ; Taylor D; Clive Lee T J Orthop Res; 2005 Mar; 23(2):475-80. PubMed ID: 15734265 [TBL] [Abstract][Full Text] [Related]
13. Effects of direction and shape of osteocyte lacunae on resisting impact and micro-damage of osteon. Liu Y; Chen B; Yin D J Mater Sci Mater Med; 2017 Mar; 28(3):38. PubMed ID: 28144850 [TBL] [Abstract][Full Text] [Related]
14. Computational homogenisation based extraction of transverse tensile cohesive responses of cortical bone tissue. Xing W; Miller T; Wildy S Biomech Model Mechanobiol; 2022 Feb; 21(1):147-161. PubMed ID: 34647217 [TBL] [Abstract][Full Text] [Related]
15. Fracture behavior of human cortical bone: Role of advanced glycation end-products and microstructural features. Maghami E; Josephson TO; Moore JP; Rezaee T; Freeman TA; Karim L; Najafi AR J Biomech; 2021 Aug; 125():110600. PubMed ID: 34246065 [TBL] [Abstract][Full Text] [Related]
16. An integrated experimental-computational framework to assess the influence of microstructure and material properties on fracture toughness in clinical specimens of human femoral cortical bone. Demirtas A; Taylor EA; Gludovatz B; Ritchie RO; Donnelly E; Ural A J Mech Behav Biomed Mater; 2023 Sep; 145():106034. PubMed ID: 37494816 [TBL] [Abstract][Full Text] [Related]
17. Microcrack behavior in bone: Stress field analysis at osteon cement line tips. Ji C; Yang X; Zhang L; Chen X; Sun Y; Lin B Proc Inst Mech Eng H; 2024; 238(8-9):909-921. PubMed ID: 39177050 [TBL] [Abstract][Full Text] [Related]
18. Numerical modelling of the mechanical behaviour of an osteon with microcracks. Giner E; Arango C; Vercher A; Javier Fuenmayor F J Mech Behav Biomed Mater; 2014 Sep; 37():109-24. PubMed ID: 24907671 [TBL] [Abstract][Full Text] [Related]
19. Experimental and numerical investigation of cracking behavior of cortical bone in cutting. Alam K Technol Health Care; 2014; 22(5):741-50. PubMed ID: 25097063 [TBL] [Abstract][Full Text] [Related]
20. Interaction of microstructure and microcrack growth in cortical bone: a finite element study. Mischinski S; Ural A Comput Methods Biomech Biomed Engin; 2013; 16(1):81-94. PubMed ID: 21970670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]