BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33657485)

  • 1. Understanding sweetness of dry wines: First evidence of astilbin isomers in red wines and quantitation in a one-century range of vintages.
    Fayad S; Le Scanff M; Waffo-Teguo P; Marchal A
    Food Chem; 2021 Aug; 352():129293. PubMed ID: 33657485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of an LC-FTMS method for quantifying natural sweeteners in wine.
    Fayad S; Cretin BN; Marchal A
    Food Chem; 2020 May; 311():125881. PubMed ID: 31767487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isomerization of astilbin and its application for preparation of the four stereoisomers from Rhizoma Smilacis Glabrae.
    Zheng D; Zhang L; Zhang QF
    J Pharm Biomed Anal; 2018 Jun; 155():202-209. PubMed ID: 29653345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Identification of dihydroflavonol glycoside isomers in Smilax glabra by HPLC-MS and HPLC-1H NMR].
    Wang YH; Li L; Zhang HG; Qiao YJ
    Zhongguo Zhong Yao Za Zhi; 2008 Jun; 33(11):1281-4. PubMed ID: 18831207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Levels of stilbene oligomers and astilbin in French varietal wines and in grapes during noble rot development.
    Landrault N; Larronde F; Delaunay JC; Castagnino C; Vercauteren J; Merillon JM; Gasc F; Cros G; Teissedre PL
    J Agric Food Chem; 2002 Mar; 50(7):2046-52. PubMed ID: 11902955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Comparison of Solubility, Stability, and Bioavailability between Astilbin and Neoastilbin Isolated from
    Zheng D; Ruan YT; Yin ZP; Zhang QF
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33076319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory effects of astilbin, neoastilbin and isoastilbin on human cytochrome CYP3A4 and 2D6 activities.
    Shi Y; Xie J; Chen R; Liu G; Tao Y; Fan Y; Wang X; Li L; Xu J
    Biomed Chromatogr; 2021 Apr; 35(4):e5039. PubMed ID: 33238041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction study of astilbin, isoastilbin and neoastilbin toward CYP2D6 by multi-spectroscopy and molecular docking.
    Tao Y; Fan Y; Liu G; Zhang Y; Wang M; Wang X; Li L
    Luminescence; 2021 Sep; 36(6):1412-1421. PubMed ID: 33949102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Taste-guided isolation of sweet-tasting compounds from grape seeds, structural elucidation and identification in wines.
    Cretin BN; Waffo-Teguo P; Dubourdieu D; Marchal A
    Food Chem; 2019 Jan; 272():388-395. PubMed ID: 30309559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hopeaphenol: the first resveratrol tetramer in wines from North Africa.
    Guebailia HA; Chira K; Richard T; Mabrouk T; Furiga A; Vitrac X; Monti JP; Delaunay JC; Mérillon JM
    J Agric Food Chem; 2006 Dec; 54(25):9559-64. PubMed ID: 17147446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of yeast macromolecules on sweetness in dry wines: role of the saccharomyces cerevisiae protein Hsp12.
    Marchal A; Marullo P; Moine V; Dubourdieu D
    J Agric Food Chem; 2011 Mar; 59(5):2004-10. PubMed ID: 21247170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First chemical and sensory characterization of Moribel and Tinto Fragoso wines using HPLC-DAD-ESI-MS/MS, GC-MS, and Napping® techniques: comparison with Tempranillo.
    Pérez-Navarro J; Izquierdo-Cañas PM; Mena-Morales A; Martínez-Gascueña J; Chacón-Vozmediano JL; García-Romero E; Gómez-Alonso S; Hermosín-Gutiérrez I
    J Sci Food Agric; 2019 Mar; 99(5):2108-2123. PubMed ID: 30298616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The anti-hyperuricemic effect of four astilbin stereoisomers in Smilax glabra on hyperuricemic mice.
    Huang L; Deng J; Chen G; Zhou M; Liang J; Yan B; Shu J; Liang Y; Huang H
    J Ethnopharmacol; 2019 Jun; 238():111777. PubMed ID: 30851369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brazilian red wines made from the hybrid grape cultivar Isabel: phenolic composition and antioxidant capacity.
    Nixdorf SL; Hermosín-Gutiérrez I
    Anal Chim Acta; 2010 Feb; 659(1-2):208-15. PubMed ID: 20103126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Garnacha Tintorera-based sweet wines: detailed phenolic composition by HPLC/DAD-ESI/MS analysis.
    Figueiredo-González M; Regueiro J; Cancho-Grande B; Simal-Gándara J
    Food Chem; 2014 Jan; 143():282-92. PubMed ID: 24054241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation and Sensory Characterization of 1,4-Cineole: A Potential Aromatic Marker of Australian Cabernet Sauvignon Wine.
    Antalick G; Tempère S; Šuklje K; Blackman JW; Deloire A; de Revel G; Schmidtke LM
    J Agric Food Chem; 2015 Oct; 63(41):9103-11. PubMed ID: 26434979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensory characterization of young South American red wines classified by varietal and origin.
    Llobodanin LG; Barroso LP; Castro IA
    J Food Sci; 2014 Aug; 79(8):S1595-603. PubMed ID: 25039987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Astringency, bitterness and color changes in dry red wines before and during oak barrel aging: An updated phenolic perspective review.
    Li SY; Duan CQ
    Crit Rev Food Sci Nutr; 2019; 59(12):1840-1867. PubMed ID: 29381384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trained and consumer panel evaluation of sparkling wines sweetened to brut or demi sec residual sugar levels with three different sugars.
    McMahon KM; Diako C; Aplin J; Mattinson DS; Culver C; Ross CF
    Food Res Int; 2017 Sep; 99(Pt 1):173-185. PubMed ID: 28784474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between the sensory-determined astringency and the flavanolic composition of red wines.
    Quijada-Morín N; Regueiro J; Simal-Gándara J; Tomás E; Rivas-Gonzalo JC; Escribano-Bailón MT
    J Agric Food Chem; 2012 Dec; 60(50):12355-61. PubMed ID: 23176406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.