These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 33657669)

  • 1. Generation of novel self-incompatible Brassica napus by CRISPR/Cas9.
    Dou S; Zhang T; Tu J; Shen J; Yi B; Wen J; Fu T; Dai C; Ma C
    Plant Biotechnol J; 2021 May; 19(5):875-877. PubMed ID: 33657669
    [No Abstract]   [Full Text] [Related]  

  • 2. Engineering herbicide-resistant oilseed rape by CRISPR/Cas9-mediated cytosine base-editing.
    Wu J; Chen C; Xian G; Liu D; Lin L; Yin S; Sun Q; Fang Y; Zhang H; Wang Y
    Plant Biotechnol J; 2020 Sep; 18(9):1857-1859. PubMed ID: 32096325
    [No Abstract]   [Full Text] [Related]  

  • 3. CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus.
    Okuzaki A; Ogawa T; Koizuka C; Kaneko K; Inaba M; Imamura J; Koizuka N
    Plant Physiol Biochem; 2018 Oct; 131():63-69. PubMed ID: 29753601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9-Mediated Multiplex Genome Editing of the
    Sun Q; Lin L; Liu D; Wu D; Fang Y; Wu J; Wang Y
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30208656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Cas9-mediated editing of starch branching enzymes results in altered starch structure in Brassica napus.
    Wang L; Wang Y; Makhmoudova A; Nitschke F; Tetlow IJ; Emes MJ
    Plant Physiol; 2022 Mar; 188(4):1866-1886. PubMed ID: 34850950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system.
    Xiong X; Liu W; Jiang J; Xu L; Huang L; Cao J
    Mol Genet Genomics; 2019 Oct; 294(5):1251-1261. PubMed ID: 31129735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Targeted Mutagenesis in Brassica Crops Using CRISPR/Cas Systems.
    Lawrenson T; Youles M; Chhetry M; Clarke M; Harwood W; Hundleby P
    Methods Mol Biol; 2023; 2653():253-271. PubMed ID: 36995631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of
    Zaman QU; Wen C; Yuqin S; Mengyu H; Desheng M; Jacqueline B; Baohong Z; Chao L; Qiong H
    CRISPR J; 2021 Jun; 4(3):360-370. PubMed ID: 34152222
    [No Abstract]   [Full Text] [Related]  

  • 9. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional Analysis of M-Locus Protein Kinase Revealed a Novel Regulatory Mechanism of Self-Incompatibility in
    Chen F; Yang Y; Li B; Liu Z; Khan F; Zhang T; Zhou G; Tu J; Shen J; Yi B; Fu T; Dai C; Ma C
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31284391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cutting Edge Genetics: CRISPR/Cas9 Editing of Plant Genomes.
    Soyars CL; Peterson BA; Burr CA; Nimchuk ZL
    Plant Cell Physiol; 2018 Aug; 59(8):1608-1620. PubMed ID: 29912402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Base editing with high efficiency in allotetraploid oilseed rape by A3A-PBE system.
    Cheng H; Hao M; Ding B; Mei D; Wang W; Wang H; Zhou R; Liu J; Li C; Hu Q
    Plant Biotechnol J; 2021 Jan; 19(1):87-97. PubMed ID: 32640102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of microsatellite instability in CRISPR/Cas9 editing mice.
    Huo X; Du Y; Lu J; Guo M; Li Z; Zhang S; Li X; Chen Z; Du X
    Mutat Res; 2017 Mar; 797-799():1-6. PubMed ID: 28284774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust CRISPR/Cas9 mediated genome editing and its application in manipulating plant height in the first generation of hexaploid Ma bamboo (Dendrocalamus latiflorus Munro).
    Ye S; Chen G; Kohnen MV; Wang W; Cai C; Ding W; Wu C; Gu L; Zheng Y; Ma X; Lin C; Zhu Q
    Plant Biotechnol J; 2020 Jul; 18(7):1501-1503. PubMed ID: 31858701
    [No Abstract]   [Full Text] [Related]  

  • 15. Use of CRISPR/Cas9 gene-editing tools for developing models in drug discovery.
    Ahmad G; Amiji M
    Drug Discov Today; 2018 Mar; 23(3):519-533. PubMed ID: 29326075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiplex gene editing in rice with simplified CRISPR-Cpf1 and CRISPR-Cas9 systems.
    Wang M; Mao Y; Lu Y; Wang Z; Tao X; Zhu JK
    J Integr Plant Biol; 2018 Aug; 60(8):626-631. PubMed ID: 29762900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Cas9 for cancer therapy: Opportunities and challenges.
    Chen M; Mao A; Xu M; Weng Q; Mao J; Ji J
    Cancer Lett; 2019 Apr; 447():48-55. PubMed ID: 30684591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9 technology as a potent molecular tool for gene therapy.
    Karimian A; Azizian K; Parsian H; Rafieian S; Shafiei-Irannejad V; Kheyrollah M; Yousefi M; Majidinia M; Yousefi B
    J Cell Physiol; 2019 Aug; 234(8):12267-12277. PubMed ID: 30697727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and application of CRISPR/Cas9 technologies in genomic editing.
    Zhang C; Quan R; Wang J
    Hum Mol Genet; 2018 Aug; 27(R2):R79-R88. PubMed ID: 29659822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. License CRISPR patents for free to share gene editing globally.
    Nature; 2021 Sep; 597(7875):152. PubMed ID: 34493846
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.