These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33657745)

  • 1. Lactic acid excretion by
    Dashper SG; Reynolds EC
    Microbiology (Reading); 1996 Jan; 142(1):33-39. PubMed ID: 33657745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential toxic effects of lactate and acetate on the metabolism of Streptococcus mutans and Streptococcus sanguis.
    Carlsson J; Hamilton IR
    Oral Microbiol Immunol; 1996 Dec; 11(6):412-9. PubMed ID: 9467375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton motive force during growth of Streptococcus lactis cells.
    Kashket ER; Blanchard AG; Metzger WC
    J Bacteriol; 1980 Jul; 143(1):128-34. PubMed ID: 6772626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH regulation by Streptococcus mutans.
    Dashper SG; Reynolds EC
    J Dent Res; 1992 May; 71(5):1159-65. PubMed ID: 1607433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of transmembrane movement of glucose and glucose analogs in Streptococcus mutants Ingbritt.
    Dashper SG; Reynolds EC
    J Bacteriol; 1990 Feb; 172(2):556-63. PubMed ID: 2298698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of low levels of fluoride on proton excretion and intracellular pH in glycolysing streptococcal cells under strictly anaerobic conditions.
    Guha-Chowdhury N; Iwami Y; Yamada T
    Caries Res; 1997; 31(5):373-8. PubMed ID: 9286521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactic acid translocation: terminal step in glycolysis by Streptococcus faecalis.
    Harold FM; Levin E
    J Bacteriol; 1974 Mar; 117(3):1141-8. PubMed ID: 4205190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton electrochemical gradients in washed cells of Nitrosomonas europaea and Nitrobacter agilis.
    Kumar S; Nicholas DJ
    J Bacteriol; 1983 Apr; 154(1):65-71. PubMed ID: 6833187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis.
    Gerós H; Cássio F; Leão C
    Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular and extracellular pHs of Streptococcus mutans after addition of acids: loading and efflux of a fluorescent pH indicator in streptococcal cells.
    Iwami Y; Kawarada K; Kojima I; Miyasawa H; Kakuta H; Mayanagi H; Takahashi N
    Oral Microbiol Immunol; 2002 Aug; 17(4):239-44. PubMed ID: 12121474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrate uptake in the halotolerant cyanobacterium Aphanothece halophytica is energy-dependent driven by DeltapH.
    Incharoensakdi A; Laloknam S
    J Biochem Mol Biol; 2005 Jul; 38(4):468-73. PubMed ID: 16053714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of organic acid anions on growth, glycolysis, and intracellular pH of oral streptococci.
    Dashper SG; Reynolds EC
    J Dent Res; 2000 Jan; 79(1):90-6. PubMed ID: 10690666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microelectrode study of the mechanisms of L-lactate entry into and release from frog sartorius muscle.
    Mason MJ; Thomas RC
    J Physiol; 1988 Jun; 400():459-79. PubMed ID: 3262155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Branched-chain amino acid transport in Streptococcus mutans Ingbritt.
    Dashper SG; Reynolds EC
    Oral Microbiol Immunol; 1993 Jun; 8(3):167-71. PubMed ID: 8233570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy recycling by lactate efflux in growing and nongrowing cells of Streptococcus cremoris.
    ten Brink B; Otto R; Hansen UP; Konings WN
    J Bacteriol; 1985 Apr; 162(1):383-90. PubMed ID: 2984179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maintenance of proton motive force by Streptococcus mutans and Streptococcus sobrinus during growth in continuous culture.
    Hamilton IR
    Oral Microbiol Immunol; 1990 Oct; 5(5):280-7. PubMed ID: 2098703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ability of acidic pH, growth inhibitors, and glucose to increase the proton motive force and energy spilling of amino acid-fermenting Clostridium sporogenes MD1 cultures.
    Flythe MD; Russell JB
    Arch Microbiol; 2005 May; 183(4):236-42. PubMed ID: 15891933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Streptococcus oligofermentans inhibits Streptococcus mutans through conversion of lactic acid into inhibitory H2O2: a possible counteroffensive strategy for interspecies competition.
    Tong H; Chen W; Merritt J; Qi F; Shi W; Dong X
    Mol Microbiol; 2007 Feb; 63(3):872-80. PubMed ID: 17302806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton electrochemical gradient and phosphate potential in submitochondrial particles.
    Azzone GF; Pozzan T; Viola E; Arslan P
    Biochim Biophys Acta; 1978 Feb; 501(2):317-29. PubMed ID: 23158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncoupling by Acetic Acid Limits Growth of and Acetogenesis by Clostridium thermoaceticum.
    Baronofsky JJ; Schreurs WJ; Kashket ER
    Appl Environ Microbiol; 1984 Dec; 48(6):1134-9. PubMed ID: 16346677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.