These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33657745)

  • 41. Lactate influx and efflux in the 'Streptococcus mutants group' and Streptococcus sanguis.
    Distler W; Kagermeier A; Hickel R; Kröncke A
    Caries Res; 1989; 23(4):252-5. PubMed ID: 2790859
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of D-cysteine on dual-species biofilms of Streptococcus mutans and Streptococcus sanguinis.
    Guo X; Liu S; Zhou X; Hu H; Zhang K; Du X; Peng X; Ren B; Cheng L; Li M
    Sci Rep; 2019 Apr; 9(1):6689. PubMed ID: 31040318
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Intracellular pH and distribution of weak acids across cell membranes. A study of D- and L-lactate and of DMO in rat diaphragm.
    Roos A
    J Physiol; 1975 Jul; 249(1):1-25. PubMed ID: 239228
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of unsaturated fatty acids in chloroplasts. Shift of the pH optimum of electron flow and relations to deltapH, thylakoid internal pH and proton uptake.
    Siegenthaler PA; Depéry F
    Eur J Biochem; 1976 Jan; 61(2):573-80. PubMed ID: 2470
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Adaptation by Streptococcus mutans to acid tolerance.
    Hamilton IR; Buckley ND
    Oral Microbiol Immunol; 1991 Apr; 6(2):65-71. PubMed ID: 1658715
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modeling the light-induced electric potential difference (ΔΨ), the pH difference (ΔpH) and the proton motive force across the thylakoid membrane in C
    Lyu H; Lazár D
    J Theor Biol; 2017 Jan; 413():11-23. PubMed ID: 27816676
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Relation between the gradient of the ATP/ADP ratio and the membrane potential across the mitochondrial membrane.
    Klingenberg M; Rottenberg H
    Eur J Biochem; 1977 Feb; 73(1):125-30. PubMed ID: 14003
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Impairment of pH gradient and membrane potential mediates redox dysfunction in the mitochondria of the post-ischemic heart.
    Kang PT; Chen CL; Lin P; Chilian WM; Chen YR
    Basic Res Cardiol; 2017 Jul; 112(4):36. PubMed ID: 28508960
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Environment-Specific Probiotic Supernatants Modify the Metabolic Activity and Survival of
    Yu H; Ganas P; Schwendicke F
    Front Microbiol; 2020; 11():1447. PubMed ID: 32670254
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The internal pH and membrane potential of the insulin-secretory granule.
    Hutton JC
    Biochem J; 1982 Apr; 204(1):171-8. PubMed ID: 6126183
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of sodium and potassium ions on intracellular pH and proton excretion in glycolyzing cells of Streptococcus mutans NCTC 10449 under strictly anaerobic conditions.
    Iwami Y; Guha-Chowdhury N; Yamada T
    Oral Microbiol Immunol; 1997 Apr; 12(2):77-81. PubMed ID: 9227130
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Xylitol inhibition of anaerobic acid production by Streptococcus mutans at various pH levels.
    Miyasawa H; Iwami Y; Mayanagi H; Takahashi N
    Oral Microbiol Immunol; 2003 Aug; 18(4):215-9. PubMed ID: 12823796
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sugar Metabolism of
    Kameda M; Abiko Y; Washio J; Tanner ACR; Kressirer CA; Mizoguchi I; Takahashi N
    Front Microbiol; 2020; 11():479. PubMed ID: 32269556
    [No Abstract]   [Full Text] [Related]  

  • 54. Malolactic fermentation: electrogenic malate uptake and malate/lactate antiport generate metabolic energy.
    Poolman B; Molenaar D; Smid EJ; Ubbink T; Abee T; Renault PP; Konings WN
    J Bacteriol; 1991 Oct; 173(19):6030-7. PubMed ID: 1917837
    [TBL] [Abstract][Full Text] [Related]  

  • 55. RgpF Is Required for Maintenance of Stress Tolerance and Virulence in Streptococcus mutans.
    Kovacs CJ; Faustoferri RC; Quivey RG
    J Bacteriol; 2017 Dec; 199(24):. PubMed ID: 28924033
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In-situ, time-lapse study of extracellular polymeric substance discharge in Streptococcus mutans biofilm.
    Liu BH; Yu LC
    Colloids Surf B Biointerfaces; 2017 Feb; 150():98-105. PubMed ID: 27907861
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The fabM gene product of Streptococcus mutans is responsible for the synthesis of monounsaturated fatty acids and is necessary for survival at low pH.
    Fozo EM; Quivey RG
    J Bacteriol; 2004 Jul; 186(13):4152-8. PubMed ID: 15205416
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Plasticity of the Pyruvate Node Modulates Hydrogen Peroxide Production and Acid Tolerance in Multiple Oral Streptococci.
    Cheng X; Redanz S; Cullin N; Zhou X; Xu X; Joshi V; Koley D; Merritt J; Kreth J
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29079629
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In Vitro Analysis of the H-Hexose Symporter on the Plasma Membrane of Sugarbeets (Beta vulgaris L.).
    Tubbe A; Buckhout TJ
    Plant Physiol; 1992 Jul; 99(3):945-51. PubMed ID: 16669023
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Contribution of Cyclic and Pseudo-cyclic Electron Transport to the Formation of Proton Motive Force in Chloroplasts.
    Shikanai T; Yamamoto H
    Mol Plant; 2017 Jan; 10(1):20-29. PubMed ID: 27575692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.