These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 33658193)
1. Host-microbe cross-talk governs amino acid chirality to regulate survival and differentiation of B cells. Suzuki M; Sujino T; Chiba S; Harada Y; Goto M; Takahashi R; Mita M; Hamase K; Kanai T; Ito M; Waldor MK; Yasui M; Sasabe J Sci Adv; 2021 Mar; 7(10):. PubMed ID: 33658193 [TBL] [Abstract][Full Text] [Related]
2. Mammals sustain amino acid homochirality against chiral conversion by symbiotic microbes. Gonda Y; Matsuda A; Adachi K; Ishii C; Suzuki M; Osaki A; Mita M; Nishizaki N; Ohtomo Y; Shimizu T; Yasui M; Hamase K; Sasabe J Proc Natl Acad Sci U S A; 2023 Apr; 120(15):e2300817120. PubMed ID: 37014864 [TBL] [Abstract][Full Text] [Related]
3. Interplay between microbial d-amino acids and host d-amino acid oxidase modifies murine mucosal defence and gut microbiota. Sasabe J; Miyoshi Y; Rakoff-Nahoum S; Zhang T; Mita M; Davis BM; Hamase K; Waldor MK Nat Microbiol; 2016 Jul; 1(10):16125. PubMed ID: 27670111 [TBL] [Abstract][Full Text] [Related]
4. Distinctive Roles of D-Amino Acids in the Homochiral World: Chirality of Amino Acids Modulates Mammalian Physiology and Pathology. Sasabe J; Suzuki M Keio J Med; 2019 Mar; 68(1):1-16. PubMed ID: 29794368 [TBL] [Abstract][Full Text] [Related]
5. Chirality of amino acids of microorganisms used in food biotechnology. Brückner H; Becker D; Lüpke M Chirality; 1993; 5(5):385-92. PubMed ID: 8398596 [TBL] [Abstract][Full Text] [Related]
6. TGF-β1 improves mucosal IgA dysfunction and dysbiosis following intestinal ischaemia-reperfusion in mice. Zhang XY; Liu ZM; Zhang HF; Li YS; Wen SH; Shen JT; Huang WQ; Liu KX J Cell Mol Med; 2016 Jun; 20(6):1014-23. PubMed ID: 26820382 [TBL] [Abstract][Full Text] [Related]
8. Emerging Role of D-Amino Acid Metabolism in the Innate Defense. Sasabe J; Suzuki M Front Microbiol; 2018; 9():933. PubMed ID: 29867842 [TBL] [Abstract][Full Text] [Related]
9. Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL. He B; Xu W; Santini PA; Polydorides AD; Chiu A; Estrella J; Shan M; Chadburn A; Villanacci V; Plebani A; Knowles DM; Rescigno M; Cerutti A Immunity; 2007 Jun; 26(6):812-26. PubMed ID: 17570691 [TBL] [Abstract][Full Text] [Related]
12. Compartmentalization of the mucosal immune responses to commensal intestinal bacteria. Macpherson AJ; Uhr T Ann N Y Acad Sci; 2004 Dec; 1029():36-43. PubMed ID: 15681741 [TBL] [Abstract][Full Text] [Related]
13. Intestinal IgA production and its role in host-microbe interaction. Gutzeit C; Magri G; Cerutti A Immunol Rev; 2014 Jul; 260(1):76-85. PubMed ID: 24942683 [TBL] [Abstract][Full Text] [Related]
14. Antibiotic-Driven Dysbiosis Mediates Intraluminal Agglutination and Alternative Segregation of Enterococcus faecium from the Intestinal Epithelium. Hendrickx AP; Top J; Bayjanov JR; Kemperman H; Rogers MR; Paganelli FL; Bonten MJ; Willems RJ mBio; 2015 Nov; 6(6):e01346-15. PubMed ID: 26556272 [TBL] [Abstract][Full Text] [Related]
15. Altered Systemic and Intestinal IgA Immune Responses in Individuals With Type 1 Diabetes. Huang J; Huang G; Li X; Hu F; Xie Z; Xiao Y; Luo S; Chao C; Guo K; Wong FS; Zhou Z; Wen L J Clin Endocrinol Metab; 2020 Dec; 105(12):e4616-25. PubMed ID: 32860693 [TBL] [Abstract][Full Text] [Related]
16. Diversified IgA-Bacteria Interaction in Gut Homeostasis. Suzuki K Adv Exp Med Biol; 2020; 1254():105-116. PubMed ID: 32323273 [TBL] [Abstract][Full Text] [Related]