These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
401 related articles for article (PubMed ID: 33658503)
21. Reversible Regulation of Promoter and Enhancer Histone Landscape by DNA Methylation in Mouse Embryonic Stem Cells. King AD; Huang K; Rubbi L; Liu S; Wang CY; Wang Y; Pellegrini M; Fan G Cell Rep; 2016 Sep; 17(1):289-302. PubMed ID: 27681438 [TBL] [Abstract][Full Text] [Related]
22. Chromatin profiling and state predictions reveal insights into epigenetic regulation during early porcine development. Innis SM; Cabot RA Epigenetics Chromatin; 2024 May; 17(1):16. PubMed ID: 38773546 [TBL] [Abstract][Full Text] [Related]
24. H3K4me3, H3K9ac, H3K27ac, H3K27me3 and H3K9me3 Histone Tags Suggest Distinct Regulatory Evolution of Open and Condensed Chromatin Landmarks. Igolkina AA; Zinkevich A; Karandasheva KO; Popov AA; Selifanova MV; Nikolaeva D; Tkachev V; Penzar D; Nikitin DM; Buzdin A Cells; 2019 Sep; 8(9):. PubMed ID: 31491936 [TBL] [Abstract][Full Text] [Related]
25. Transgenerational inheritance: how impacts to the epigenetic and genetic information of parents affect offspring health. Xavier MJ; Roman SD; Aitken RJ; Nixon B Hum Reprod Update; 2019 Sep; 25(5):518-540. PubMed ID: 31374565 [TBL] [Abstract][Full Text] [Related]
26. Chromatin state analysis of the barley epigenome reveals a higher-order structure defined by H3K27me1 and H3K27me3 abundance. Baker K; Dhillon T; Colas I; Cook N; Milne I; Milne L; Bayer M; Flavell AJ Plant J; 2015 Oct; 84(1):111-24. PubMed ID: 26255869 [TBL] [Abstract][Full Text] [Related]
27. The dynamic broad epigenetic (H3K4me3, H3K27ac) domain as a mark of essential genes. Beacon TH; Delcuve GP; López C; Nardocci G; Kovalchuk I; van Wijnen AJ; Davie JR Clin Epigenetics; 2021 Jul; 13(1):138. PubMed ID: 34238359 [TBL] [Abstract][Full Text] [Related]
28. Comprehensive characterization of the epigenetic landscape in Multiple Myeloma. Alaterre E; Ovejero S; Herviou L; de Boussac H; Papadopoulos G; Kulis M; Boireau S; Robert N; Requirand G; Bruyer A; Cartron G; Vincent L; Martinez AM; Martin-Subero JI; Cavalli G; Moreaux J Theranostics; 2022; 12(4):1715-1729. PubMed ID: 35198065 [No Abstract] [Full Text] [Related]
29. Chromatin regulators with tumor suppressor properties and their alterations in human cancers. Shu XS; Li L; Tao Q Epigenomics; 2012 Oct; 4(5):537-49. PubMed ID: 23130835 [TBL] [Abstract][Full Text] [Related]
30. A pan-cancer analysis of driver gene mutations, DNA methylation and gene expressions reveals that chromatin remodeling is a major mechanism inducing global changes in cancer epigenomes. Youn A; Kim KI; Rabadan R; Tycko B; Shen Y; Wang S BMC Med Genomics; 2018 Nov; 11(1):98. PubMed ID: 30400878 [TBL] [Abstract][Full Text] [Related]
31. Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. Roudier F; Ahmed I; Bérard C; Sarazin A; Mary-Huard T; Cortijo S; Bouyer D; Caillieux E; Duvernois-Berthet E; Al-Shikhley L; Giraut L; Després B; Drevensek S; Barneche F; Dèrozier S; Brunaud V; Aubourg S; Schnittger A; Bowler C; Martin-Magniette ML; Robin S; Caboche M; Colot V EMBO J; 2011 May; 30(10):1928-38. PubMed ID: 21487388 [TBL] [Abstract][Full Text] [Related]
32. Differentially expressed genes are marked by histone 3 lysine 9 trimethylation in human cancer cells. Wiencke JK; Zheng S; Morrison Z; Yeh RF Oncogene; 2008 Apr; 27(17):2412-21. PubMed ID: 17968314 [TBL] [Abstract][Full Text] [Related]
34. BRCA1 mutations attenuate super-enhancer function and chromatin looping in haploinsufficient human breast epithelial cells. Zhang X; Wang Y; Chiang HC; Hsieh YP; Lu C; Park BH; Jatoi I; Jin VX; Hu Y; Li R Breast Cancer Res; 2019 Apr; 21(1):51. PubMed ID: 30995943 [TBL] [Abstract][Full Text] [Related]
35. Cancer epigenome. Lechner M; Boshoff C; Beck S Adv Genet; 2010; 70():247-76. PubMed ID: 20920751 [TBL] [Abstract][Full Text] [Related]
36. Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations. Taberlay PC; Achinger-Kawecka J; Lun AT; Buske FA; Sabir K; Gould CM; Zotenko E; Bert SA; Giles KA; Bauer DC; Smyth GK; Stirzaker C; O'Donoghue SI; Clark SJ Genome Res; 2016 Jun; 26(6):719-31. PubMed ID: 27053337 [TBL] [Abstract][Full Text] [Related]
37. Broad genic repression domains signify enhanced silencing of oncogenes. Zhao D; Zhang L; Zhang M; Xia B; Lv J; Gao X; Wang G; Meng Q; Yi Y; Zhu S; Tomoiaga AS; Lee MG; Cooke JP; Cao Q; Chen K Nat Commun; 2020 Nov; 11(1):5560. PubMed ID: 33144558 [TBL] [Abstract][Full Text] [Related]
38. Characterization of the human thyroid epigenome. Siu C; Wiseman S; Gakkhar S; Heravi-Moussavi A; Bilenky M; Carles A; Sierocinski T; Tam A; Zhao E; Kasaian K; Moore RA; Mungall AJ; Walker B; Thomson T; Marra MA; Hirst M; Jones SJM J Endocrinol; 2017 Nov; 235(2):153-165. PubMed ID: 28808080 [TBL] [Abstract][Full Text] [Related]
39. ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome. Hon G; Ren B; Wang W PLoS Comput Biol; 2008 Oct; 4(10):e1000201. PubMed ID: 18927605 [TBL] [Abstract][Full Text] [Related]
40. Hyperacetylated chromatin domains mark cell type-specific genes and suggest distinct modes of enhancer function. Fox S; Myers JA; Davidson C; Getman M; Kingsley PD; Frankiewicz N; Bulger M Nat Commun; 2020 Sep; 11(1):4544. PubMed ID: 32917861 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]