These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 33658518)

  • 1. Inter- and intra-tumor heterogeneity of metastatic prostate cancer determined by digital spatial gene expression profiling.
    Brady L; Kriner M; Coleman I; Morrissey C; Roudier M; True LD; Gulati R; Plymate SR; Zhou Z; Birditt B; Meredith R; Geiss G; Hoang M; Beechem J; Nelson PS
    Nat Commun; 2021 Mar; 12(1):1426. PubMed ID: 33658518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation of B7-H3 with androgen receptor, immune pathways and poor outcome in prostate cancer: an expression-based analysis.
    Benzon B; Zhao SG; Haffner MC; Takhar M; Erho N; Yousefi K; Hurley P; Bishop JL; Tosoian J; Ghabili K; Alshalalfa M; Glavaris S; Simons BW; Tran P; Davicioni E; Karnes RJ; Boudadi K; Antonarakis ES; Schaeffer EM; Drake CG; Feng F; Ross AE
    Prostate Cancer Prostatic Dis; 2017 Mar; 20(1):28-35. PubMed ID: 27801901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immune checkpoint B7-H3 protein expression is associated with poor outcome and androgen receptor status in prostate cancer.
    Nunes-Xavier CE; Kildal W; Kleppe A; Danielsen HE; Waehre H; Llarena R; Maelandsmo GM; Fodstad Ø; Pulido R; López JI
    Prostate; 2021 Sep; 81(12):838-848. PubMed ID: 34125445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association of B7-H3 expression with racial ancestry, immune cell density, and androgen receptor activation in prostate cancer.
    Mendes AA; Lu J; Kaur HB; Zheng SL; Xu J; Hicks J; Weiner AB; Schaeffer EM; Ross AE; Balk SP; Taplin ME; Lack NA; Tekoglu E; Maynard JP; De Marzo AM; Antonarakis ES; Sfanos KS; Joshu CE; Shenderov E; Lotan TL
    Cancer; 2022 Jun; 128(12):2269-2280. PubMed ID: 35333400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New B7 Family Checkpoints in Human Cancers.
    Ni L; Dong C
    Mol Cancer Ther; 2017 Jul; 16(7):1203-1211. PubMed ID: 28679835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blockade of PD-1, PD-L1, and TIM-3 Altered Distinct Immune- and Cancer-Related Signaling Pathways in the Transcriptome of Human Breast Cancer Explants.
    Saleh R; Toor SM; Al-Ali D; Sasidharan Nair V; Elkord E
    Genes (Basel); 2020 Jun; 11(6):. PubMed ID: 32616706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmed Death Ligand 1 (PD-L1) Status and Tumor-Infiltrating Lymphocytes in Hot Spots of Primary and Liver Metastases in Prostate Cancer With Neuroendocrine Differentiation.
    von Hardenberg J; Hartmann S; Nitschke K; Worst TS; Ting S; Reis H; Nuhn P; Weis CA; Erben P
    Clin Genitourin Cancer; 2019 Apr; 17(2):145-153.e5. PubMed ID: 30709785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Case-control study of PD-1, PD-L1 and B7-H3 expression in lung cancer patients with and without human immunodeficiency virus (HIV) infection.
    Scilla KA; Zandberg DP; Bentzen SM; Mainor C; Heath J; Ioffe OB; Cellini AL; Edelman MJ; Riedel DJ; Feliciano JL
    Lung Cancer; 2018 Sep; 123():87-90. PubMed ID: 30089601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pan-cancer analysis of TIM-3 transcriptomic expression reveals high levels in pancreatic cancer and interpatient heterogeneity.
    Lim J; Kurzrock R; Nishizaki D; Miyashita H; Adashek JJ; Lee S; Pabla S; Nesline M; Conroy JM; DePietro P; Lippman SM; Kato S
    Cancer Med; 2024 Jan; 13(1):e6844. PubMed ID: 38132831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CTHRC1 and PD‑1/PD‑L1 expression predicts tumor recurrence in prostate cancer.
    Zhou Q; Xiong W; Zhou X; Gao RS; Lin QF; Liu HY; Li JN; Tian XF
    Mol Med Rep; 2019 Nov; 20(5):4244-4252. PubMed ID: 31545446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. B7-H3 Expression in NSCLC and Its Association with B7-H4, PD-L1 and Tumor-Infiltrating Lymphocytes.
    Altan M; Pelekanou V; Schalper KA; Toki M; Gaule P; Syrigos K; Herbst RS; Rimm DL
    Clin Cancer Res; 2017 Sep; 23(17):5202-5209. PubMed ID: 28539467
    [No Abstract]   [Full Text] [Related]  

  • 12. Correlation between messenger RNA expression and protein expression of immune checkpoint-associated molecules in bladder urothelial carcinoma: A retrospective study.
    Le Goux C; Damotte D; Vacher S; Sibony M; Delongchamps NB; Schnitzler A; Terris B; Zerbib M; Bieche I; Pignot G
    Urol Oncol; 2017 May; 35(5):257-263. PubMed ID: 28291636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of immune checkpoint regulators, cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed death-ligand 1 (PD-L1), in female breast carcinomas.
    Kassardjian A; Shintaku PI; Moatamed NA
    PLoS One; 2018; 13(4):e0195958. PubMed ID: 29672601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone Cell Activity in Clinical Prostate Cancer Bone Metastasis and Its Inverse Relation to Tumor Cell Androgen Receptor Activity.
    Nordstrand A; Bovinder Ylitalo E; Thysell E; Jernberg E; Crnalic S; Widmark A; Bergh A; Lerner UH; Wikström P
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29670000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomarkers associated with checkpoint inhibitors.
    Manson G; Norwood J; Marabelle A; Kohrt H; Houot R
    Ann Oncol; 2016 Jul; 27(7):1199-206. PubMed ID: 27122549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association of PD-1, PD-L1, and CTLA-4 Gene Expression and Clinicopathologic Characteristics in Patients With Non-Small-Cell Lung Cancer.
    Lafuente-Sanchis A; Zúñiga Á; Estors M; Martínez-Hernández NJ; Cremades A; Cuenca M; Galbis JM
    Clin Lung Cancer; 2017 Mar; 18(2):e109-e116. PubMed ID: 27816393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of cap analysis of gene expression and chromatin immunoprecipitation analysis on array reveals genome-wide androgen receptor signaling in prostate cancer cells.
    Takayama K; Tsutsumi S; Katayama S; Okayama T; Horie-Inoue K; Ikeda K; Urano T; Kawazu C; Hasegawa A; Ikeo K; Gojyobori T; Ouchi Y; Hayashizaki Y; Aburatani H; Inoue S
    Oncogene; 2011 Feb; 30(5):619-30. PubMed ID: 20890304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Context dependent regulatory patterns of the androgen receptor and androgen receptor target genes.
    Olsen JR; Azeem W; Hellem MR; Marvyin K; Hua Y; Qu Y; Li L; Lin B; Ke X; Øyan AM; Kalland K
    BMC Cancer; 2016 Jul; 16():377. PubMed ID: 27378372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct transcriptional repertoire of the androgen receptor in ETS fusion-negative prostate cancer.
    Berglund AE; Rounbehler RJ; Gerke T; Awasthi S; Cheng CH; Takhar M; Davicioni E; Alshalalfa M; Erho N; Klein EA; Freedland SJ; Ross AE; Schaeffer EM; Trock BJ; Den RB; Cleveland JL; Park JY; Dhillon J; Yamoah K
    Prostate Cancer Prostatic Dis; 2019 May; 22(2):292-302. PubMed ID: 30367117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation of expression of Major Vault Protein with androgen receptor and immune checkpoint protein B7-H3, and with poor prognosis in prostate cancer.
    Nunes-Xavier CE; Emaldi M; Guldvik IJ; Ramberg H; Taskén KA; Mælandsmo GM; Fodstad Ø; Llarena R; Pulido R; López JI
    Pathol Res Pract; 2023 Jan; 241():154243. PubMed ID: 36481650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.