BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33659318)

  • 1. Preparation of Yeast tRNA Sample for NMR Spectroscopy.
    Catala M; Gato A; Tisné C; Barraud P
    Bio Protoc; 2020 Jun; 10(12):e3646. PubMed ID: 33659318
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Catala M; Gato A; Tisné C; Barraud P
    Biomol NMR Assign; 2020 Oct; 14(2):169-174. PubMed ID: 32239363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Method to Monitor the Introduction of Posttranscriptional Modifications in tRNAs with NMR Spectroscopy.
    Gato A; Catala M; Tisné C; Barraud P
    Methods Mol Biol; 2021; 2298():307-323. PubMed ID: 34085253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-resolved NMR monitoring of tRNA maturation.
    Barraud P; Gato A; Heiss M; Catala M; Kellner S; Tisné C
    Nat Commun; 2019 Jul; 10(1):3373. PubMed ID: 31358763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in the Structural and Functional Understanding of m
    Smoczynski J; Yared MJ; Meynier V; Barraud P; Tisné C
    Acc Chem Res; 2024 Feb; 57(4):429-38. PubMed ID: 38331425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The occurrence order and cross-talk of different tRNA modifications.
    Li J; Zhu WY; Yang WQ; Li CT; Liu RJ
    Sci China Life Sci; 2021 Sep; 64(9):1423-1436. PubMed ID: 33881742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. To be or not to be modified: Miscellaneous aspects influencing nucleotide modifications in tRNAs.
    Barraud P; Tisné C
    IUBMB Life; 2019 Aug; 71(8):1126-1140. PubMed ID: 30932315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partially modified tRNAs for the study of tRNA maturation and function.
    Schultz SK; Kothe U
    Methods Enzymol; 2021; 658():225-250. PubMed ID: 34517948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different modification pathways for m1A58 incorporation in yeast elongator and initiator tRNAs.
    Yared MJ; Yoluç Y; Catala M; Tisné C; Kaiser S; Barraud P
    Nucleic Acids Res; 2023 Oct; 51(19):10653-10667. PubMed ID: 37650648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise analysis of modification status at various stage of tRNA maturation in Saccharomyces cerevisiae.
    Ohira T; Miyauchi K; Sakaguchi Y; Suzuki T; Suzuki T
    Nucleic Acids Symp Ser (Oxf); 2009; (53):301-2. PubMed ID: 19749380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer RNA post-transcriptional processing, turnover, and subcellular dynamics in the yeast Saccharomyces cerevisiae.
    Hopper AK
    Genetics; 2013 May; 194(1):43-67. PubMed ID: 23633143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Native tertiary structure and nucleoside modifications suppress tRNA's intrinsic ability to activate the innate immune sensor PKR.
    Nallagatla SR; Jones CN; Ghosh SK; Sharma SD; Cameron CE; Spremulli LL; Bevilacqua PC
    PLoS One; 2013; 8(3):e57905. PubMed ID: 23483938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural elements in yeast tRNAs required for homologous modification of guanosine-26 into dimethylguanosine-26 by the yeast Trm1 tRNA-modifying enzyme.
    Edqvist J; Blomqvist K; Stråby KB
    Biochemistry; 1994 Aug; 33(32):9546-51. PubMed ID: 8068629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. tRNAmodpred: A computational method for predicting posttranscriptional modifications in tRNAs.
    Machnicka MA; Dunin-Horkawicz S; de Crécy-Lagard V; Bujnicki JM
    Methods; 2016 Sep; 107():34-41. PubMed ID: 27016142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tertiary structures of mitochondrial tRNAs having characteristic secondary structures.
    Watanabe Y; Kawai G; Yokogawa T; Hayashi I; Hayashi N; Nishikawa K; Ueda T; Watanabe K
    Nucleic Acids Symp Ser; 1993; (29):209-10. PubMed ID: 8247771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA modifying enzymes shape tRNA biogenesis and function.
    Schultz SK; Kothe U
    J Biol Chem; 2024 Jun; ():107488. PubMed ID: 38908752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis and function of posttranscriptional modifications of transfer RNAs.
    El Yacoubi B; Bailly M; de Crécy-Lagard V
    Annu Rev Genet; 2012; 46():69-95. PubMed ID: 22905870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of modifications in microbial, native tRNA that suppress immunostimulatory activity.
    Gehrig S; Eberle ME; Botschen F; Rimbach K; Eberle F; Eigenbrod T; Kaiser S; Holmes WM; Erdmann VA; Sprinzl M; Bec G; Keith G; Dalpke AH; Helm M
    J Exp Med; 2012 Feb; 209(2):225-33. PubMed ID: 22312113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inosine modifications in human tRNAs are incorporated at the precursor tRNA level.
    Torres AG; Piñeyro D; Rodríguez-Escribà M; Camacho N; Reina O; Saint-Léger A; Filonava L; Batlle E; Ribas de Pouplana L
    Nucleic Acids Res; 2015 May; 43(10):5145-57. PubMed ID: 25916855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear control of cloverleaf structure of human mitochondrial tRNA(Lys).
    Helm M; Attardi G
    J Mol Biol; 2004 Mar; 337(3):545-60. PubMed ID: 15019776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.