BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33659318)

  • 21. Directed Evolution of Heterologous tRNAs Leads to Reduced Dependence on Post-transcriptional Modifications.
    Baldridge KC; Jora M; Maranhao AC; Quick MM; Addepalli B; Brodbelt JS; Ellington AD; Limbach PA; Contreras LM
    ACS Synth Biol; 2018 May; 7(5):1315-1327. PubMed ID: 29694026
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distinct evolutionary pathways for the synthesis and function of tRNA modifications.
    Kimura S
    Brief Funct Genomics; 2021 Mar; 20(2):125-134. PubMed ID: 33454776
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nuclear-encoded factors involved in post-transcriptional processing and modification of mitochondrial tRNAs in human disease.
    Powell CA; Nicholls TJ; Minczuk M
    Front Genet; 2015; 6():79. PubMed ID: 25806043
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Actions of the anticodon arm in translation on the phenotypes of RNA mutants.
    Yarus M; Cline SW; Wier P; Breeden L; Thompson RC
    J Mol Biol; 1986 Nov; 192(2):235-55. PubMed ID: 2435916
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Backbone resonance assignments of the m1A22 tRNA methyltransferase TrmK from Bacillus subtilis.
    Dégut C; Barraud P; Larue V; Tisné C
    Biomol NMR Assign; 2016 Oct; 10(2):253-7. PubMed ID: 27098549
    [TBL] [Abstract][Full Text] [Related]  

  • 26. tRNA elbow modifications affect the tRNA pseudouridine synthase TruB and the methyltransferase TrmA.
    Schultz SK; Kothe U
    RNA; 2020 Sep; 26(9):1131-1142. PubMed ID: 32385137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. tRNA-guanine transglycosylase from Escherichia coli: recognition of noncognate-cognate chimeric tRNA and discovery of a novel recognition site within the TpsiC arm of tRNA(Phe).
    Kung FL; Nonekowski S; Garcia GA
    RNA; 2000 Feb; 6(2):233-44. PubMed ID: 10688362
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temperature jump relaxation studies on the interactions between transfer RNAs with complementary anticodons. The effect of modified bases adjacent to the anticodon triplet.
    Houssier C; Grosjean H
    J Biomol Struct Dyn; 1985 Oct; 3(2):387-408. PubMed ID: 3917029
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Saccharomyces cerevisiae SUP53 tRNA gene transcripts are processed by mammalian cell extracts in vitro but are not processed in vivo.
    Ganguly S; Sharp PA; RajBhandary UL
    Mol Cell Biol; 1988 Jan; 8(1):361-70. PubMed ID: 3275875
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing the diversity and regulation of tRNA modifications.
    Kimura S; Srisuknimit V; Waldor MK
    Curr Opin Microbiol; 2020 Oct; 57():41-48. PubMed ID: 32663792
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Observing the fate of tRNA and its modifications by nucleic acid isotope labeling mass spectrometry: NAIL-MS.
    Heiss M; Reichle VF; Kellner S
    RNA Biol; 2017 Sep; 14(9):1260-1268. PubMed ID: 28488916
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Initial position of aminoacylation of individual Escherichia coli, yeast, and calf liver transfer RNAs.
    Chinault AC; Tan KH; Hassur SM; Hecht SM
    Biochemistry; 1977 Feb; 16(4):766-76. PubMed ID: 319826
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cellular dynamics of tRNAs and their genes.
    Hopper AK; Pai DA; Engelke DR
    FEBS Lett; 2010 Jan; 584(2):310-7. PubMed ID: 19931532
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of Sequence and Covalent Modifications on Yeast tRNA Dynamics.
    Zhang X; Walker RC; Phizicky EM; Mathews DH
    J Chem Theory Comput; 2014 Aug; 10(8):3473-3483. PubMed ID: 25136272
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolving specificity of tRNA 3-methyl-cytidine-32 (m3C32) modification: a subset of tRNAsSer requires N6-isopentenylation of A37.
    Arimbasseri AG; Iben J; Wei FY; Rijal K; Tomizawa K; Hafner M; Maraia RJ
    RNA; 2016 Sep; 22(9):1400-10. PubMed ID: 27354703
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An interplay between transcription, processing, and degradation determines tRNA levels in yeast.
    Wichtowska D; Turowski TW; Boguta M
    Wiley Interdiscip Rev RNA; 2013; 4(6):709-22. PubMed ID: 24039171
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The yeast rapid tRNA decay pathway competes with elongation factor 1A for substrate tRNAs and acts on tRNAs lacking one or more of several modifications.
    Dewe JM; Whipple JM; Chernyakov I; Jaramillo LN; Phizicky EM
    RNA; 2012 Oct; 18(10):1886-96. PubMed ID: 22895820
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Position of aminoacylation of individual Escherichia coli and yeast tRNAs.
    Hecht SM; Chinualt AC
    Proc Natl Acad Sci U S A; 1976 Feb; 73(2):405-9. PubMed ID: 1108023
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mapping post-transcriptional modifications in Staphylococcus aureus tRNAs by nanoLC/MSMS.
    Antoine L; Wolff P; Westhof E; Romby P; Marzi S
    Biochimie; 2019 Sep; 164():60-69. PubMed ID: 31295507
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Post-transcriptional nucleotide addition is responsible for the formation of the 5' terminus of histidine tRNA.
    Cooley L; Appel B; Söll D
    Proc Natl Acad Sci U S A; 1982 Nov; 79(21):6475-9. PubMed ID: 6292903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.