These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33659430)

  • 1. Affinity Purification of GO-Matryoshka Biosensors from
    Sadoine M; Castro-Rodríguez V; Poloczek T; Javot H; Sunal E; Wudick MM; Frommer WB
    Bio Protoc; 2020 Oct; 10(19):e3773. PubMed ID: 33659430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ratiometric Matryoshka biosensors from a nested cassette of green- and orange-emitting fluorescent proteins.
    Ast C; Foret J; Oltrogge LM; De Michele R; Kleist TJ; Ho CH; Frommer WB
    Nat Commun; 2017 Sep; 8(1):431. PubMed ID: 28874729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Monochromatically Excitable Green-Red Dual-Fluorophore Fusion Incorporating a New Large Stokes Shift Fluorescent Protein.
    Ejike JO; Sadoine M; Shen Y; Ishikawa Y; Sunal E; Hänsch S; Hamacher AB; Frommer WB; Wudick MM; Campbell RE; Kleist TJ
    Biochemistry; 2024 Jan; 63(1):171-180. PubMed ID: 38113455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Genetically Encoded Fluorescent Biosensors for Quantitative In Vivo Imaging.
    Yoshinari A; Moe-Lange J; Kleist TJ; Cartwright HN; Quint DA; Ehrhardt DW; Frommer WB; Nakamura M
    Methods Mol Biol; 2021; 2200():303-322. PubMed ID: 33175384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-ion-dependent GFP emission in vivo by combining a circularly permutated green fluorescent protein with an engineered metal-ion-binding coiled-coil.
    Mizuno T; Murao K; Tanabe Y; Oda M; Tanaka T
    J Am Chem Soc; 2007 Sep; 129(37):11378-83. PubMed ID: 17722917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semisynthetic fluorescent sensor proteins based on self-labeling protein tags.
    Brun MA; Tan KT; Nakata E; Hinner MJ; Johnsson K
    J Am Chem Soc; 2009 Apr; 131(16):5873-84. PubMed ID: 19348459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and characterization of novel jGCaMP8f calcium sensor variants with improved kinetics and fluorescence response range.
    Tran O; Hughes HJ; Carter T; Török K
    Front Cell Neurosci; 2023; 17():1155406. PubMed ID: 37275778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A bacteria colony-based screen for optimal linker combinations in genetically encoded biosensors.
    Ibraheem A; Yap H; Ding Y; Campbell RE
    BMC Biotechnol; 2011 Nov; 11():105. PubMed ID: 22074568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NeMeHg, genetically encoded indicator for mercury ions based on mNeonGreen green fluorescent protein and merP protein from
    Subach OM; Piatkevich KD; Subach FV
    Front Bioeng Biotechnol; 2024; 12():1407874. PubMed ID: 39050684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an Optical Zn
    Qin Y; Sammond DW; Braselmann E; Carpenter MC; Palmer AE
    ACS Chem Biol; 2016 Oct; 11(10):2744-2751. PubMed ID: 27467056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ratiometric Fluorogenic RNA-Based Sensors for Imaging Live-Cell Dynamics of Small Molecules.
    Wu R; Karunanayake Mudiyanselage APKK; Ren K; Sun Z; Tian Q; Zhao B; Bagheri Y; Lutati D; Keshri P; You M
    ACS Appl Bio Mater; 2020 May; 3(5):2633-2642. PubMed ID: 35025397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ratiometric detection of Zn(II) using chelating fluorescent protein chimeras.
    Evers TH; Appelhof MA; de Graaf-Heuvelmans PT; Meijer EW; Merkx M
    J Mol Biol; 2007 Nov; 374(2):411-25. PubMed ID: 17936298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-Based Fluorescent Biosensors for Detecting Metabolites in vitro and in Living Cells.
    Jaffrey SR
    Adv Pharmacol; 2018; 82():187-203. PubMed ID: 29413520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ratiometric BRET Measurements of ATP with a Genetically-Encoded Luminescent Sensor.
    Min SH; French AR; Trull KJ; Tat K; Varney SA; Tantama M
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31405152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring dynamic changes in mitochondrial calcium levels during apoptosis using a genetically encoded calcium sensor.
    Akimzhanov AM; Boehning D
    J Vis Exp; 2011 Apr; (50):. PubMed ID: 21490580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Fractional Intensities of Time-resolved Fluorescence to Sensitively Quantify NADH/NAD
    Chang M; Li L; Hu H; Hu Q; Wang A; Cao X; Yu X; Zhang S; Zhao Y; Chen J; Yang Y; Xu J
    Sci Rep; 2017 Jun; 7(1):4209. PubMed ID: 28646144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetically encoded fluorescence lifetime biosensors: overview, advances, and opportunities.
    Mo Y; Zhou H; Xu J; Chen X; Li L; Zhang S
    Analyst; 2023 Oct; 148(20):4939-4953. PubMed ID: 37721109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes.
    Thestrup T; Litzlbauer J; Bartholomäus I; Mues M; Russo L; Dana H; Kovalchuk Y; Liang Y; Kalamakis G; Laukat Y; Becker S; Witte G; Geiger A; Allen T; Rome LC; Chen TW; Kim DS; Garaschuk O; Griesinger C; Griesbeck O
    Nat Methods; 2014 Feb; 11(2):175-82. PubMed ID: 24390440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetically Encoded Ratiometric RNA-Based Sensors for Quantitative Imaging of Small Molecules in Living Cells.
    Wu R; Karunanayake Mudiyanselage APKK; Shafiei F; Zhao B; Bagheri Y; Yu Q; McAuliffe K; Ren K; You M
    Angew Chem Int Ed Engl; 2019 Dec; 58(50):18271-18275. PubMed ID: 31591798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Ph-Sensor Properties of a Fluorescent Protein from Dendronephthya sp].
    Pakhomov AA; Chertkova RV; Martynov VI
    Bioorg Khim; 2015; 41(6):669-74. PubMed ID: 27125020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.