These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33659456)

  • 1. K
    Li H
    Bio Protoc; 2020 Nov; 10(21):e3802. PubMed ID: 33659456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring cation transport by Na,K- and H,K-ATPase in Xenopus oocytes by atomic absorption spectrophotometry: an alternative to radioisotope assays.
    Dürr KL; Tavraz NN; Spiller S; Friedrich T
    J Vis Exp; 2013 Feb; (72):e50201. PubMed ID: 23462593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing plant transporter expression in Xenopus oocytes.
    Feng H; Xia X; Fan X; Xu G; Miller AJ
    Plant Methods; 2013 Dec; 9(1):48. PubMed ID: 24359672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional Expression and Characterization of Plant ABC Transporters in Xenopus laevis Oocytes for Transport Engineering Purposes.
    Xu D; Veres D; Belew ZM; Olsen CE; Nour-Eldin HH; Halkier BA
    Methods Enzymol; 2016; 576():207-24. PubMed ID: 27480688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The rice monovalent cation transporter OsHKT2;4: revisited ionic selectivity.
    Sassi A; Mieulet D; Khan I; Moreau B; Gaillard I; Sentenac H; Véry AA
    Plant Physiol; 2012 Sep; 160(1):498-510. PubMed ID: 22773759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method for determining the unitary functional capacity of cloned channels and transporters expressed in Xenopus laevis oocytes.
    Zampighi GA; Kreman M; Boorer KJ; Loo DD; Bezanilla F; Chandy G; Hall JE; Wright EM
    J Membr Biol; 1995 Nov; 148(1):65-78. PubMed ID: 8558603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring ion transport activities in Xenopus oocytes using the ion-trap technique.
    Blanchard MG; Longpré JP; Wallendorff B; Lapointe JY
    Am J Physiol Cell Physiol; 2008 Nov; 295(5):C1464-72. PubMed ID: 18829896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional identification of a GORK potassium channel from the ancient desert shrub Ammopiptanthus mongolicus (Maxim.) Cheng f.
    Li J; Zhang H; Lei H; Jin M; Yue G; Su Y
    Plant Cell Rep; 2016 Apr; 35(4):803-15. PubMed ID: 26804987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upregulation of the large conductance voltage- and Ca2+-activated K+ channels by Janus kinase 2.
    Hosseinzadeh Z; Almilaji A; Honisch S; Pakladok T; Liu G; Bhavsar SK; Ruth P; Shumilina E; Lang F
    Am J Physiol Cell Physiol; 2014 Jun; 306(11):C1041-9. PubMed ID: 24696148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transoocyte voltage clamp: a non-invasive technique for electrophysiological experiments with Xenopus laevis oocytes.
    Cucu D; Simaels J; Jans D; Van Driessche W
    Pflugers Arch; 2004 Mar; 447(6):934-42. PubMed ID: 14716490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA interference reveals that endogenous Xenopus MinK-related peptides govern mammalian K+ channel function in oocyte expression studies.
    Anantharam A; Lewis A; Panaghie G; Gordon E; McCrossan ZA; Lerner DJ; Abbott GW
    J Biol Chem; 2003 Apr; 278(14):11739-45. PubMed ID: 12529362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poplar potassium transporters capable of controlling K+ homeostasis and K+-dependent xylogenesis.
    Langer K; Ache P; Geiger D; Stinzing A; Arend M; Wind C; Regan S; Fromm J; Hedrich R
    Plant J; 2002 Dec; 32(6):997-1009. PubMed ID: 12492841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The heterologous expression of H(+)-coupled transporters in Xenopus oocytes.
    Miller AJ; Smith SJ; Theodoulou FL
    Symp Soc Exp Biol; 1994; 48():167-77. PubMed ID: 7597641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of Saccharomyces cerevisiae for patch-clamp analysis of heterologous membrane proteins: characterization of Kat1, an inward-rectifying K+ channel from Arabidopsis thaliana, and comparison with endogeneous yeast channels and carriers.
    Bertl A; Anderson JA; Slayman CL; Gaber RF
    Proc Natl Acad Sci U S A; 1995 Mar; 92(7):2701-5. PubMed ID: 7708709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xenopus oocytes as an expression system for plant transporters.
    Miller AJ; Zhou JJ
    Biochim Biophys Acta; 2000 May; 1465(1-2):343-58. PubMed ID: 10748264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SGK3 Sensitivity of Voltage Gated K+ Channel Kv1.5 (KCNA5).
    Ahmed M; Fezai M; Uzcategui NL; Hosseinzadeh Z; Lang F
    Cell Physiol Biochem; 2016; 38(1):359-67. PubMed ID: 26824455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-electrode Voltage-clamp Recordings in
    Wang C; Zhang J; Schroeder JI
    Bio Protoc; 2017 Jan; 7(2):. PubMed ID: 28516122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane transport mechanisms probed by capacitance measurements with megahertz voltage clamp.
    Lu CC; Kabakov A; Markin VS; Mager S; Frazier GA; Hilgemann DW
    Proc Natl Acad Sci U S A; 1995 Nov; 92(24):11220-4. PubMed ID: 7479969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quantitative analysis of the activation and inactivation kinetics of HERG expressed in Xenopus oocytes.
    Wang S; Liu S; Morales MJ; Strauss HC; Rasmusson RL
    J Physiol; 1997 Jul; 502 ( Pt 1)(Pt 1):45-60. PubMed ID: 9234196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of endogenous channels by high levels of heterologous membrane proteins in Xenopus oocytes.
    Tzounopoulos T; Maylie J; Adelman JP
    Biophys J; 1995 Sep; 69(3):904-8. PubMed ID: 8519990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.