BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33659515)

  • 1. Production, Purification and Characterization of Recombinant Biotinylated Phytochrome B for Extracellular Optogenetics.
    Hörner M; Yousefi OS; Schamel WWA; Weber W
    Bio Protoc; 2020 Mar; 10(5):e3541. PubMed ID: 33659515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of Phytochromes by High-Cell-Density
    Hörner M; Gerhardt K; Salavei P; Hoess P; Härrer D; Kaiser J; Tabor JJ; Weber W
    ACS Synth Biol; 2019 Oct; 8(10):2442-2450. PubMed ID: 31526004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-controllable Transcription System by Nucleocytoplasmic Shuttling of a Truncated Phytochrome B.
    Noda N; Ozawa T
    Photochem Photobiol; 2018 Sep; 94(5):1071-1076. PubMed ID: 29893404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromophore-bearing NH2-terminal domains of phytochromes A and B determine their photosensory specificity and differential light lability.
    Wagner D; Fairchild CD; Kuhn RM; Quail PH
    Proc Natl Acad Sci U S A; 1996 Apr; 93(9):4011-5. PubMed ID: 8633007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OptoREACT: Optogenetic Receptor Activation on Nonengineered Human T Cells.
    Armbruster A; Ehret AK; Russ M; Idstein V; Klenzendorf M; Gaspar D; Juraske C; Yousefi OS; Schamel WW; Weber W; Hörner M
    ACS Synth Biol; 2024 Mar; 13(3):752-762. PubMed ID: 38335541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the requirements for localization of phytochrome B to nuclear bodies.
    Chen M; Schwab R; Chory J
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):14493-8. PubMed ID: 14612575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conditional synergism between cryptochrome 1 and phytochrome B is shown by the analysis of phyA, phyB, and hy4 simple, double, and triple mutants in Arabidopsis.
    Casal JJ; Mazzella MA
    Plant Physiol; 1998 Sep; 118(1):19-25. PubMed ID: 9733522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of a Light-Controlled Phytochrome-Based Extracellular Matrix with Reversibly Adjustable Mechanical Properties.
    Hörner M; Hoess P; Emig R; Rebmann B; Weber W
    Methods Mol Biol; 2020; 2173():217-231. PubMed ID: 32651921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-Activated Nuclear Translocation of Adeno-Associated Virus Nanoparticles Using Phytochrome B for Enhanced, Tunable, and Spatially Programmable Gene Delivery.
    Gomez EJ; Gerhardt K; Judd J; Tabor JJ; Suh J
    ACS Nano; 2016 Jan; 10(1):225-37. PubMed ID: 26618393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The homeodomain-leucine zipper ATHB23, a phytochrome B-interacting protein, is important for phytochrome B-mediated red light signaling.
    Choi H; Jeong S; Kim DS; Na HJ; Ryu JS; Lee SS; Nam HG; Lim PO; Woo HR
    Physiol Plant; 2014 Feb; 150(2):308-20. PubMed ID: 23964902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytochrome A and Phytochrome B Have Overlapping but Distinct Functions in Arabidopsis Development.
    Reed JW; Nagatani A; Elich TD; Fagan M; Chory J
    Plant Physiol; 1994 Apr; 104(4):1139-1149. PubMed ID: 12232154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions Between phyB and PIF Proteins Alter Thermal Reversion Reactions in vitro.
    Smith RW; Helwig B; Westphal AH; Pel E; Borst JW; Fleck C
    Photochem Photobiol; 2017 Nov; 93(6):1525-1531. PubMed ID: 28503745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoactivated phytochromes interact with HEMERA and promote its accumulation to establish photomorphogenesis in Arabidopsis.
    Galvão RM; Li M; Kothadia SM; Haskel JD; Decker PV; Van Buskirk EK; Chen M
    Genes Dev; 2012 Aug; 26(16):1851-63. PubMed ID: 22895253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytochrome-Mediated Light Regulation of PHYA- and PHYB-GUS Transgenes in Arabidopsis thaliana Seedlings.
    Somers DE; Quail PH
    Plant Physiol; 1995 Feb; 107(2):523-534. PubMed ID: 12228380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-Controlled Affinity Purification of Protein Complexes Exemplified by the Resting ZAP70 Interactome.
    Hörner M; Eble J; Yousefi OS; Schwarz J; Warscheid B; Weber W; Schamel WWA
    Front Immunol; 2019; 10():226. PubMed ID: 30863395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocontrol of subcellular partitioning of phytochrome-B:GFP fusion protein in tobacco seedlings.
    Gil P; Kircher S; Adam E; Bury E; Kozma-Bognar L; Schäfer E; Nagy F
    Plant J; 2000 Apr; 22(2):135-45. PubMed ID: 10792829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of rice phytochrome A partially complements phytochrome B deficiency in Arabidopsis.
    Halliday KJ; Bolle C; Chua NH; Whitelam GC
    Planta; 1999 Jan; 207(3):401-9. PubMed ID: 9951735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanisms for mediating light-dependent nucleo/cytoplasmic partitioning of phytochrome photoreceptors.
    Klose C; Viczián A; Kircher S; Schäfer E; Nagy F
    New Phytol; 2015 May; 206(3):965-71. PubMed ID: 26042244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of phytochrome B signaling by phytochrome A and FHY1 in Arabidopsis thaliana.
    Cerdán PD; Yanovsky MJ; Reymundo FC; Nagatani A; Staneloni RJ; Whitelam GC; Casal JJ
    Plant J; 1999 Jun; 18(5):499-507. PubMed ID: 10417700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional analysis of a 450-amino acid N-terminal fragment of phytochrome B in Arabidopsis.
    Oka Y; Matsushita T; Mochizuki N; Suzuki T; Tokutomi S; Nagatani A
    Plant Cell; 2004 Aug; 16(8):2104-16. PubMed ID: 15273294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.