These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33660373)

  • 61. An optically transparent multi-electrode array for combined electrophysiology and optophysiology at the mesoscopic scale.
    Brosch M; Deckert M; Rathi S; Takagaki K; Weidner T; Ohl FW; Schmidt B; Lippert MT
    J Neural Eng; 2020 Jul; 17(4):046014. PubMed ID: 32705997
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Soft Bioelectronic Stickers: Selection and Evaluation of Skin-Interfacing Electrodes.
    Lopes PA; Vaz Gomes D; Green Marques D; Faia P; Góis J; Patrício TF; Coelho J; Serra A; de Almeida AT; Majidi C; Tavakoli M
    Adv Healthc Mater; 2019 Aug; 8(15):e1900234. PubMed ID: 31273945
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Ag-AgCl electrode noise in high-resolution ECG measurements.
    Fernández M; Pallás-Areny R
    Biomed Instrum Technol; 2000; 34(2):125-30. PubMed ID: 10820641
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Hydrogel-Based Organic Subdural Electrode with High Conformability to Brain Surface.
    Oribe S; Yoshida S; Kusama S; Osawa SI; Nakagawa A; Iwasaki M; Tominaga T; Nishizawa M
    Sci Rep; 2019 Sep; 9(1):13379. PubMed ID: 31527626
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A comparison study of electrodes for neonate electrical impedance tomography.
    Rahal M; Khor JM; Demosthenous A; Tizzard A; Bayford R
    Physiol Meas; 2009 Jun; 30(6):S73-84. PubMed ID: 19491443
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A novel flexible hydrogel electrode with a strong moisturizing ability for long-term EEG recording.
    Shen G; Gao K; Zhao N; Yi Z; Jiang C; Yang B; Liu J
    J Neural Eng; 2021 Dec; 18(6):. PubMed ID: 34883478
    [No Abstract]   [Full Text] [Related]  

  • 67. A dry polymer nanocomposite transcutaneous electrode for functional electrical stimulation.
    Marquez-Chin M; Saadatnia Z; Sun YC; Naguib HE; Popovic MR
    Biomed Eng Online; 2024 Jan; 23(1):10. PubMed ID: 38279147
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Empirical study of unipolar and bipolar configurations using high resolution single multi-walled carbon nanotube electrodes for electrophysiological probing of electrically excitable cells.
    de Asis ED; Leung J; Wood S; Nguyen CV
    Nanotechnology; 2010 Mar; 21(12):125101. PubMed ID: 20182008
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Active Claw-Shaped Dry Electrodes for EEG Measurement in Hair Areas.
    Wang Z; Ding Y; Yuan W; Chen H; Chen W; Chen C
    Bioengineering (Basel); 2024 Mar; 11(3):. PubMed ID: 38534550
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Soft, conformal bioelectronics for a wireless human-wheelchair interface.
    Mishra S; Norton JJS; Lee Y; Lee DS; Agee N; Chen Y; Chun Y; Yeo WH
    Biosens Bioelectron; 2017 May; 91():796-803. PubMed ID: 28152485
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Viscoelastic Adhesive, Super-Conformable, and Semi-Flowable Liquid Metal Eutectogels for High-Fidelity Electrophysiological Monitoring.
    Dong J; Liu H; Lim T; Oh B; Peng Y; Liu T; Park S; Huang Y
    ACS Appl Mater Interfaces; 2024 Jul; 16(27):34732-34742. PubMed ID: 38938185
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Poly (3, 4-ethylenedioxythiophene)-ionic liquid coating improves neural recording and stimulation functionality of MEAs.
    Du ZJ; Luo X; Weaver C; Cui XT
    J Mater Chem C Mater; 2015 Jul; 3(25):6515-6524. PubMed ID: 26491540
    [TBL] [Abstract][Full Text] [Related]  

  • 73. PEDOT electrochemical polymerization improves electrode fidelity and sensitivity.
    Frost CM; Wei B; Baghmanli Z; Cederna PS; Urbanchek MG
    Plast Reconstr Surg; 2012 Apr; 129(4):933-942. PubMed ID: 22456363
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Carbon monofilament electrodes for unit recording and functional MRI in same subjects.
    Chuapoco MR; Choy M; Schmid F; Duffy BA; Lee HJ; Lee JH
    Neuroimage; 2019 Feb; 186():806-816. PubMed ID: 30391560
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Microelectrode Arrays for Simultaneous Electrophysiology and Advanced Optical Microscopy.
    Middya S; Curto VF; Fernández-Villegas A; Robbins M; Gurke J; Moonen EJM; Kaminski Schierle GS; Malliaras GG
    Adv Sci (Weinh); 2021 Jul; 8(13):2004434. PubMed ID: 36246164
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A non-adhesive solid-gel electrode for a non-invasive brain-machine interface.
    Toyama S; Takano K; Kansaku K
    Front Neurol; 2012; 3():114. PubMed ID: 22826701
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A Non-Newtonian liquid metal enabled enhanced electrography.
    Timosina V; Cole T; Lu H; Shu J; Zhou X; Zhang C; Guo J; Kavehei O; Tang SY
    Biosens Bioelectron; 2023 Sep; 235():115414. PubMed ID: 37236012
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Flexible Multi-Layer Semi-Dry Electrode for Scalp EEG Measurements at Hairy Sites.
    Hua H; Tang W; Xu X; Feng DD; Shu L
    Micromachines (Basel); 2019 Aug; 10(8):. PubMed ID: 31382695
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Multiple physical crosslinked highly adhesive and conductive hydrogels for human motion and electrophysiological signal monitoring.
    Wu Q; Chen A; Xu Y; Han S; Zhang J; Chen Y; Hang J; Yang X; Guan L
    Soft Matter; 2024 May; 20(17):3666-3675. PubMed ID: 38623704
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Fabrication of Textile-Based Dry Electrode and Analysis of Its Surface EMG Signal for Applying Smart Wear.
    Kim H; Rho S; Han S; Lim D; Jeong W
    Polymers (Basel); 2022 Sep; 14(17):. PubMed ID: 36080714
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.