These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 33660508)

  • 1. Bimetallic Nanoparticles Associating Noble Metals and First-Row Transition Metals in Catalysis.
    Mustieles Marin I; Asensio JM; Chaudret B
    ACS Nano; 2021 Mar; 15(3):3550-3556. PubMed ID: 33660508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties.
    Zaleska-Medynska A; Marchelek M; Diak M; Grabowska E
    Adv Colloid Interface Sci; 2016 Mar; 229():80-107. PubMed ID: 26805520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Core-Shell and Alloy Structures of Multimetallic Nanomaterials and Their Catalytic Synergies.
    Wu ZP; Shan S; Zang SQ; Zhong CJ
    Acc Chem Res; 2020 Dec; 53(12):2913-2924. PubMed ID: 33170638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molybdenum Carbide: Controlling the Geometric and Electronic Structure of Noble Metals for the Activation of O-H and C-H Bonds.
    Deng Y; Ge Y; Xu M; Yu Q; Xiao D; Yao S; Ma D
    Acc Chem Res; 2019 Dec; 52(12):3372-3383. PubMed ID: 31411856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermetallic Nanoparticles: Synthetic Control and Their Enhanced Electrocatalysis.
    Li J; Sun S
    Acc Chem Res; 2019 Jul; 52(7):2015-2025. PubMed ID: 31251036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Action of bimetallic nanocatalysts under reaction conditions and during catalysis: evolution of chemistry from high vacuum conditions to reaction conditions.
    Tao FF; Zhang S; Nguyen L; Zhang X
    Chem Soc Rev; 2012 Dec; 41(24):7980-93. PubMed ID: 23023152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Platinum and palladium nano-structured catalysts for polymer electrolyte fuel cells and direct methanol fuel cells.
    Long NV; Thi CM; Yong Y; Nogami M; Ohtaki M
    J Nanosci Nanotechnol; 2013 Jul; 13(7):4799-824. PubMed ID: 23901503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetically controlled autocatalytic chemical process for bulk production of bimetallic core-shell structured nanoparticles.
    Taufany F; Pan CJ; Rick J; Chou HL; Tsai MC; Hwang BJ; Liu DG; Lee JF; Tang MT; Lee YC; Chen CI
    ACS Nano; 2011 Dec; 5(12):9370-81. PubMed ID: 22047129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Principles and Methods for the Rational Design of Core-Shell Nanoparticle Catalysts with Ultralow Noble Metal Loadings.
    Hunt ST; Román-Leshkov Y
    Acc Chem Res; 2018 May; 51(5):1054-1062. PubMed ID: 29510023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructural Evolution of Au@Pt Core-Shell Nanoparticles under Electrochemical Polarization.
    Hong W; Li CW
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30977-30986. PubMed ID: 31365226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noble metal alloy complex nanostructures: controllable synthesis and their electrochemical property.
    Liu HL; Nosheen F; Wang X
    Chem Soc Rev; 2015 May; 44(10):3056-78. PubMed ID: 25793455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesoporous Noble Metal-Metalloid/Nonmetal Alloy Nanomaterials: Designing Highly Efficient Catalysts.
    Wang Y; Lv H; Sun L; Liu B
    ACS Nano; 2021 Dec; 15(12):18661-18670. PubMed ID: 34910448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasmall (<2 nm) Au@Pt Nanostructures: Tuning the Surface Electronic States for Electrocatalysis.
    Germano LD; Marangoni VS; Mogili NVV; Seixas L; Maroneze CM
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5661-5667. PubMed ID: 30694046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrite-Type Nanomaterials for Advanced Electrocatalysis.
    Gao MR; Zheng YR; Jiang J; Yu SH
    Acc Chem Res; 2017 Sep; 50(9):2194-2204. PubMed ID: 28825788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic Layer Deposition Route To Tailor Nanoalloys of Noble and Non-noble Metals.
    Ramachandran RK; Dendooven J; Filez M; Galvita VV; Poelman H; Solano E; Minjauw MM; Devloo-Casier K; Fonda E; Hermida-Merino D; Bras W; Marin GB; Detavernier C
    ACS Nano; 2016 Sep; 10(9):8770-7. PubMed ID: 27585708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achieving Highly Durable Random Alloy Nanocatalysts through Intermetallic Cores.
    Gamler JTL; Leonardi A; Ashberry HM; Daanen NN; Losovyj Y; Unocic RR; Engel M; Skrabalak SE
    ACS Nano; 2019 Apr; 13(4):4008-4017. PubMed ID: 30957486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal Stability of Platinum-Cobalt Bimetallic Nanoparticles: Chemically Disordered Alloys, Ordered Intermetallics, and Core-Shell Structures.
    Huang R; Shao GF; Zhang Y; Wen YH
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12486-12493. PubMed ID: 28349693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal overlayer on metal carbide substrate: unique bimetallic properties for catalysis and electrocatalysis.
    Kelly TG; Chen JG
    Chem Soc Rev; 2012 Dec; 41(24):8021-34. PubMed ID: 22810579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ordered Intermetallic Pd
    Sun D; Wang Y; Livi KJT; Wang C; Luo R; Zhang Z; Alghamdi H; Li C; An F; Gaskey B; Mueller T; Hall AS
    ACS Nano; 2019 Sep; 13(9):10818-10825. PubMed ID: 31469544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noble metal nanoparticle@metal oxide core/yolk-shell nanostructures as catalysts: recent progress and perspective.
    Li G; Tang Z
    Nanoscale; 2014 Apr; 6(8):3995-4011. PubMed ID: 24622876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.