BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 3366094)

  • 1. Dynamics of a biochemical system with multiple oscillatory domains as a clue for multiple modes of neuronal oscillations.
    Goldbeter A; Moran F
    Eur Biophys J; 1988; 15(5):277-87. PubMed ID: 3366094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oscillatory isozymes as the simplest model for coupled biochemical oscillators.
    Li Y; Goldbeter A
    J Theor Biol; 1989 May; 138(2):149-74. PubMed ID: 2607769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coexistence of multiple propagating wave-fronts in a regulated enzyme reaction model: link with birhythmicity and multi-threshold excitability.
    Pérez-Iratxeta C; Halloy J; Morán F; Martiel JL; Goldbeter A
    Biophys Chem; 1998 Sep; 74(3):197-207. PubMed ID: 17029746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitability with multiple thresholds. A new mode of dynamic behavior analyzed in a regulated biochemical system.
    Moran F; Goldbeter A
    Biophys Chem; 1985 Nov; 23(1-2):71-7. PubMed ID: 4092084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Onset of birhythmicity in a regulated biochemical system.
    Morán F; Goldbeter A
    Biophys Chem; 1984 Aug; 20(1-2):149-56. PubMed ID: 6237691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finding complex oscillatory phenomena in biochemical systems. An empirical approach.
    Goldbeter A; Decroly O; Li Y; Martiel JL; Moran F
    Biophys Chem; 1988 Feb; 29(1-2):211-7. PubMed ID: 2833948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From simple to complex patterns of oscillatory behavior in a model for the mammalian cell cycle containing multiple oscillatory circuits.
    Gérard C; Goldbeter A
    Chaos; 2010 Dec; 20(4):045109. PubMed ID: 21198121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From simple to complex oscillatory behavior in metabolic and genetic control networks.
    Goldbeter A; Gonze D; Houart G; Leloup JC; Halloy J; Dupont G
    Chaos; 2001 Mar; 11(1):247-260. PubMed ID: 12779458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chaos and birhythmicity in a model for circadian oscillations of the PER and TIM proteins in drosophila.
    Leloup JC; Goldbeter A
    J Theor Biol; 1999 Jun; 198(3):445-59. PubMed ID: 10366496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coexistence of multiple periodic and chaotic regimes in biochemical oscillations with phase shifts.
    de la Fuente IM; Martinez L; Aguirregabiria JM; Veguillas J
    Acta Biotheor; 1998 Mar; 46(1):37-51. PubMed ID: 9558751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bursting, chaos and birhythmicity originating from self-modulation of the inositol 1,4,5-trisphosphate signal in a model for intracellular Ca2+ oscillations.
    Houart G; Dupont G; Goldbeter A
    Bull Math Biol; 1999 May; 61(3):507-30. PubMed ID: 17883229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal self-organization in biochemical systems: periodic behavior vs. chaos.
    Goldbeter A; Decroly O
    Am J Physiol; 1983 Oct; 245(4):R478-83. PubMed ID: 6312816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic behavior of a neural network model of locomotor control in the lamprey.
    Jung R; Kiemel T; Cohen AH
    J Neurophysiol; 1996 Mar; 75(3):1074-86. PubMed ID: 8867119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spiking dynamics of interacting oscillatory neurons.
    Kazantsev VB; Nekorkin VI; Binczak S; Jacquir S; Bilbault JM
    Chaos; 2005 Jun; 15(2):23103. PubMed ID: 16035879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model for circadian rhythms in Drosophila incorporating the formation of a complex between the PER and TIM proteins.
    Leloup JC; Goldbeter A
    J Biol Rhythms; 1998 Feb; 13(1):70-87. PubMed ID: 9486845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Birhythmicity, chaos, and other patterns of temporal self-organization in a multiply regulated biochemical system.
    Decroly O; Goldbeter A
    Proc Natl Acad Sci U S A; 1982 Nov; 79(22):6917-21. PubMed ID: 6960354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase-locked cluster oscillations in periodically forced integrate-and-fire-or-burst neuronal populations.
    Langdon AJ; Breakspear M; Coombes S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061903. PubMed ID: 23367972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of substrate inhibition kinetics in enzymatic chemical oscillations.
    Shen P; Larter R
    Biophys J; 1994 Oct; 67(4):1414-28. PubMed ID: 7819481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity of temporal self-organized behaviors in a biochemical system.
    De la Fuente IM
    Biosystems; 1999 May; 50(2):83-97. PubMed ID: 10367973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the mammalian circadian clock: sensitivity analysis and multiplicity of oscillatory mechanisms.
    Leloup JC; Goldbeter A
    J Theor Biol; 2004 Oct; 230(4):541-62. PubMed ID: 15363675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.