BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 33660952)

  • 1. High density bioprocessing of human pluripotent stem cells by metabolic control and in silico modeling.
    Manstein F; Ullmann K; Kropp C; Halloin C; Triebert W; Franke A; Farr CM; Sahabian A; Haase A; Breitkreuz Y; Peitz M; Brüstle O; Kalies S; Martin U; Olmer R; Zweigerdt R
    Stem Cells Transl Med; 2021 Jul; 10(7):1063-1080. PubMed ID: 33660952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Feeding Strategies on the Scalable Expansion of Human Pluripotent Stem Cells in Single-Use Stirred Tank Bioreactors.
    Kropp C; Kempf H; Halloin C; Robles-Diaz D; Franke A; Scheper T; Kinast K; Knorpp T; Joos TO; Haverich A; Martin U; Zweigerdt R; Olmer R
    Stem Cells Transl Med; 2016 Oct; 5(10):1289-1301. PubMed ID: 27369897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matrix-free human pluripotent stem cell manufacturing by seed train approach and intermediate cryopreservation.
    Ullmann K; Manstein F; Triebert W; Kriedemann N; Franke A; Teske J; Mertens M; Lupanow V; Göhring G; Haase A; Martin U; Zweigerdt R
    Stem Cell Res Ther; 2024 Mar; 15(1):89. PubMed ID: 38528578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Pluripotent Stem Cell Expansion in Stirred Tank Bioreactors.
    Manstein F; Halloin C; Zweigerdt R
    Methods Mol Biol; 2019; 1994():79-91. PubMed ID: 31124106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Process control and
    Manstein F; Ullmann K; Triebert W; Zweigerdt R
    STAR Protoc; 2021 Dec; 2(4):100988. PubMed ID: 34917976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioprocess development for mass production of size-controlled human pluripotent stem cell aggregates in stirred suspension bioreactor.
    Abbasalizadeh S; Larijani MR; Samadian A; Baharvand H
    Tissue Eng Part C Methods; 2012 Nov; 18(11):831-51. PubMed ID: 22559864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous WNT Control Enables Advanced hPSC Cardiac Processing and Prognostic Surface Marker Identification in Chemically Defined Suspension Culture.
    Halloin C; Schwanke K; Löbel W; Franke A; Szepes M; Biswanath S; Wunderlich S; Merkert S; Weber N; Osten F; de la Roche J; Polten F; Christoph Wollert K; Kraft T; Fischer M; Martin U; Gruh I; Kempf H; Zweigerdt R
    Stem Cell Reports; 2019 Aug; 13(2):366-379. PubMed ID: 31353227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The combination of dextran sulphate and polyvinyl alcohol prevents excess aggregation and promotes proliferation of pluripotent stem cells in suspension culture.
    Tang X; Wu H; Xie J; Wang N; Chen Q; Zhong Z; Qiu Y; Wang J; Li X; Situ P; Lai L; Zern MA; Chen H; Duan Y
    Cell Prolif; 2021 Sep; 54(9):e13112. PubMed ID: 34390064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile engineering of xeno-free microcarriers for the scalable cultivation of human pluripotent stem cells in stirred suspension.
    Fan Y; Hsiung M; Cheng C; Tzanakakis ES
    Tissue Eng Part A; 2014 Feb; 20(3-4):588-99. PubMed ID: 24098972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scalable stirred suspension culture for the generation of billions of human induced pluripotent stem cells using single-use bioreactors.
    Kwok CK; Ueda Y; Kadari A; Günther K; Ergün S; Heron A; Schnitzler AC; Rook M; Edenhofer F
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e1076-e1087. PubMed ID: 28382727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Universal and Robust Integrated Platform for the Scalable Production of Human Cardiomyocytes From Pluripotent Stem Cells.
    Fonoudi H; Ansari H; Abbasalizadeh S; Larijani MR; Kiani S; Hashemizadeh S; Zarchi AS; Bosman A; Blue GM; Pahlavan S; Perry M; Orr Y; Mayorchak Y; Vandenberg J; Talkhabi M; Winlaw DS; Harvey RP; Aghdami N; Baharvand H
    Stem Cells Transl Med; 2015 Dec; 4(12):1482-94. PubMed ID: 26511653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture.
    Kempf H; Olmer R; Kropp C; Rückert M; Jara-Avaca M; Robles-Diaz D; Franke A; Elliott DA; Wojciechowski D; Fischer M; Roa Lara A; Kensah G; Gruh I; Haverich A; Martin U; Zweigerdt R
    Stem Cell Reports; 2014 Dec; 3(6):1132-46. PubMed ID: 25454631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microcarrier-based platforms for in vitro expansion and differentiation of human pluripotent stem cells in bioreactor culture systems.
    Badenes SM; Fernandes TG; Rodrigues CAV; Diogo MM; Cabral JMS
    J Biotechnol; 2016 Sep; 234():71-82. PubMed ID: 27480342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering 3D micro-compartments for highly efficient and scale-independent expansion of human pluripotent stem cells in bioreactors.
    Cohen PJR; Luquet E; Pletenka J; Leonard A; Warter E; Gurchenkov B; Carrere J; Rieu C; Hardouin J; Moncaubeig F; Lanero M; Quelennec E; Wurtz H; Jamet E; Demarco M; Banal C; Van Liedekerke P; Nassoy P; Feyeux M; Lefort N; Alessandri K
    Biomaterials; 2023 Apr; 295():122033. PubMed ID: 36764194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalable Expansion of Human Pluripotent Stem Cell-Derived Neural Progenitors in Stirred Suspension Bioreactor Under Xeno-free Condition.
    Nemati S; Abbasalizadeh S; Baharvand H
    Methods Mol Biol; 2016; 1502():143-58. PubMed ID: 26867543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors.
    Olmer R; Lange A; Selzer S; Kasper C; Haverich A; Martin U; Zweigerdt R
    Tissue Eng Part C Methods; 2012 Oct; 18(10):772-84. PubMed ID: 22519745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating cell state to enhance suspension expansion of human pluripotent stem cells.
    Lipsitz YY; Woodford C; Yin T; Hanna JH; Zandstra PW
    Proc Natl Acad Sci U S A; 2018 Jun; 115(25):6369-6374. PubMed ID: 29866848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiac differentiation of human pluripotent stem cells in scalable suspension culture.
    Kempf H; Kropp C; Olmer R; Martin U; Zweigerdt R
    Nat Protoc; 2015 Sep; 10(9):1345-61. PubMed ID: 26270394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection of human induced pluripotent stem cells lines optimization of cardiomyocytes differentiation in an integrated suspension microcarrier bioreactor.
    Laco F; Lam AT; Woo TL; Tong G; Ho V; Soong PL; Grishina E; Lin KH; Reuveny S; Oh SK
    Stem Cell Res Ther; 2020 Mar; 11(1):118. PubMed ID: 32183888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-xenogeneic expansion and definitive endoderm differentiation of human pluripotent stem cells in an automated bioreactor.
    Jacobson EF; Chen Z; Stoukides DM; Nair GG; Hebrok M; Tzanakakis ES
    Biotechnol Bioeng; 2021 Feb; 118(2):979-991. PubMed ID: 33205831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.