BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 33661339)

  • 1. How arginine derivatives alter the stability of lipid membranes: dissecting the roles of side chains, backbone and termini.
    Verbeek SF; Awasthi N; Teiwes NK; Mey I; Hub JS; Janshoff A
    Eur Biophys J; 2021 Mar; 50(2):127-142. PubMed ID: 33661339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and Thermodynamic Insight into Spontaneous Membrane-Translocating Peptides Across Model PC/PG Lipid Bilayers.
    Hu Y; Patel S
    J Membr Biol; 2015 Jun; 248(3):505-15. PubMed ID: 25008278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of lipid saturation on amyloid-beta peptide partitioning and aggregation in neuronal membranes: molecular dynamics simulations.
    Ntarakas N; Ermilova I; Lyubartsev AP
    Eur Biophys J; 2019 Dec; 48(8):813-824. PubMed ID: 31655893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating Hydrophilic Pores in Model Lipid Bilayers Using Molecular Simulations: Correlating Bilayer Properties with Pore-Formation Thermodynamics.
    Hu Y; Sinha SK; Patel S
    Langmuir; 2015 Jun; 31(24):6615-31. PubMed ID: 25614183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oligoarginine vectors for intracellular delivery: role of arginine side-chain orientation in chain length-dependent destabilization of lipid membranes.
    Bouchet AM; Lairion F; Ruysschaert JM; Lensink MF
    Chem Phys Lipids; 2012 Jan; 165(1):89-96. PubMed ID: 22119850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconciling structural and thermodynamic predictions using all-atom and coarse-grain force fields: the case of charged oligo-arginine translocation into DMPC bilayers.
    Hu Y; Sinha SK; Patel S
    J Phys Chem B; 2014 Oct; 118(41):11973-92. PubMed ID: 25290376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translocation thermodynamics of linear and cyclic nonaarginine into model DPPC bilayer via coarse-grained molecular dynamics simulation: implications of pore formation and nonadditivity.
    Hu Y; Liu X; Sinha SK; Patel S
    J Phys Chem B; 2014 Mar; 118(10):2670-82. PubMed ID: 24506488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of arginine-rich cell penetrating peptides on membrane pore formation and life-times: a molecular simulation study.
    Sun D; Forsman J; Lund M; Woodward CE
    Phys Chem Chem Phys; 2014 Oct; 16(38):20785-95. PubMed ID: 25166723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers.
    Bennett WF; Hong CK; Wang Y; Tieleman DP
    J Chem Theory Comput; 2016 Sep; 12(9):4524-33. PubMed ID: 27529120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the disparate effects of arginine and lysine residues on antimicrobial peptide/bilayer association.
    Rice A; Wereszczynski J
    Biochim Biophys Acta Biomembr; 2017 Oct; 1859(10):1941-1950. PubMed ID: 28583830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arginine in membranes: the connection between molecular dynamics simulations and translocon-mediated insertion experiments.
    Schow EV; Freites JA; Myint PC; Bernsel A; von Heijne G; White SH; Tobias DJ
    J Membr Biol; 2011 Jan; 239(1-2):35-48. PubMed ID: 21127848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implicit membrane treatment of buried charged groups: application to peptide translocation across lipid bilayers.
    Lazaridis T; Leveritt JM; PeBenito L
    Biochim Biophys Acta; 2014 Sep; 1838(9):2149-59. PubMed ID: 24525075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of cell-penetrating HIV1 TAT peptide insertion into PC/PS/CHOL model bilayers through transmembrane pores: the roles of cholesterol and anionic lipids.
    Hu Y; Patel S
    Soft Matter; 2016 Aug; 12(32):6716-27. PubMed ID: 27435187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer of arginine into lipid bilayers is nonadditive.
    MacCallum JL; Bennett WF; Tieleman DP
    Biophys J; 2011 Jul; 101(1):110-7. PubMed ID: 21723820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free energy of translocating an arginine-rich cell-penetrating peptide across a lipid bilayer suggests pore formation.
    Huang K; GarcĂ­a AE
    Biophys J; 2013 Jan; 104(2):412-20. PubMed ID: 23442863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free energetics of arginine permeation into model DMPC lipid bilayers: coupling of effective counterion concentration and lateral bilayer dimensions.
    Hu Y; Ou S; Patel S
    J Phys Chem B; 2013 Oct; 117(39):11641-53. PubMed ID: 23888915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint Reaction Coordinate for Computing the Free-Energy Landscape of Pore Nucleation and Pore Expansion in Lipid Membranes.
    Hub JS
    J Chem Theory Comput; 2021 Feb; 17(2):1229-1239. PubMed ID: 33427469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating Force Fields for the Computational Prediction of Ionized Arginine and Lysine Side-Chains Partitioning into Lipid Bilayers and Octanol.
    Sun D; Forsman J; Woodward CE
    J Chem Theory Comput; 2015 Apr; 11(4):1775-91. PubMed ID: 26574387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomistic Molecular Simulations Suggest a Kinetic Model for Membrane Translocation by Arginine-Rich Peptides.
    Sun D; Forsman J; Woodward CE
    J Phys Chem B; 2015 Nov; 119(45):14413-20. PubMed ID: 26485313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.