BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33661609)

  • 1. Single-Cell Stretching in Viscoelastic Fluids with Electronically Triggered Imaging for Cellular Mechanical Phenotyping.
    Liang M; Yang D; Zhou Y; Li P; Zhong J; Ai Y
    Anal Chem; 2021 Mar; 93(10):4567-4575. PubMed ID: 33661609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biophysical phenotyping of single cells using a differential multiconstriction microfluidic device with self-aligned 3D electrodes.
    Yang D; Zhou Y; Zhou Y; Han J; Ai Y
    Biosens Bioelectron; 2019 May; 133():16-23. PubMed ID: 30903937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Systematic Study of Size Correlation and Young's Modulus Sensitivity for Cellular Mechanical Phenotyping by Microfluidic Approaches.
    Liang M; Zhong J; Ai Y
    Adv Healthc Mater; 2022 Oct; 11(19):e2200628. PubMed ID: 35852381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pinched-flow hydrodynamic stretching of single-cells.
    Dudani JS; Gossett DR; Tse HT; Di Carlo D
    Lab Chip; 2013 Sep; 13(18):3728-34. PubMed ID: 23884381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-Free Multivariate Biophysical Phenotyping-Activated Acoustic Sorting at the Single-Cell Level.
    Li P; Ai Y
    Anal Chem; 2021 Mar; 93(8):4108-4117. PubMed ID: 33599494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput single-cell rheology in complex samples by dynamic real-time deformability cytometry.
    Fregin B; Czerwinski F; Biedenweg D; Girardo S; Gross S; Aurich K; Otto O
    Nat Commun; 2019 Jan; 10(1):415. PubMed ID: 30679420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput single-cell mechanical phenotyping with real-time deformability cytometry.
    Urbanska M; Rosendahl P; Kräter M; Guck J
    Methods Cell Biol; 2018; 147():175-198. PubMed ID: 30165957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical phenotyping of breast cell lines by in-flow deformation-dependent dynamics under tuneable compressive forces.
    Dannhauser D; Maremonti MI; Panzetta V; Rossi D; Netti PA; Causa F
    Lab Chip; 2020 Dec; 20(24):4611-4622. PubMed ID: 33146642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic stretching of single cells for large population mechanical phenotyping.
    Gossett DR; Tse HT; Lee SA; Ying Y; Lindgren AG; Yang OO; Rao J; Clark AT; Di Carlo D
    Proc Natl Acad Sci U S A; 2012 May; 109(20):7630-5. PubMed ID: 22547795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscoelastic-Sorting Integrated Deformability Cytometer for High-Throughput Sorting and High-Precision Mechanical Phenotyping of Tumor Cells.
    Chen Y; Jiang L; Zhang X; Ni Z; Xiang N
    Anal Chem; 2023 Dec; 95(49):18180-18187. PubMed ID: 38018866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brillouin flow cytometry for label-free mechanical phenotyping of the nucleus.
    Zhang J; Nou XA; Kim H; Scarcelli G
    Lab Chip; 2017 Feb; 17(4):663-670. PubMed ID: 28102402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impedance-Enabled Camera-Free Intrinsic Mechanical Cytometry.
    Feng Y; Chai H; He W; Liang F; Cheng Z; Wang W
    Small Methods; 2022 Jul; 6(7):e2200325. PubMed ID: 35595712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput adjustable deformability cytometry utilizing elasto-inertial focusing and virtual fluidic channel.
    Zhou Z; Ni C; Zhu Z; Chen Y; Ni Z; Xiang N
    Lab Chip; 2023 Oct; 23(20):4528-4539. PubMed ID: 37766593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developments in label-free microfluidic methods for single-cell analysis and sorting.
    Carey TR; Cotner KL; Li B; Sohn LL
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2019 Jan; 11(1):e1529. PubMed ID: 29687965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic Impedance-Deformability Cytometry for Label-Free Single Neutrophil Mechanophenotyping.
    Petchakup C; Yang H; Gong L; He L; Tay HM; Dalan R; Chung AJ; Li KHH; Hou HW
    Small; 2022 May; 18(18):e2104822. PubMed ID: 35253966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impedance-Based Multimodal Electrical-Mechanical Intrinsic Flow Cytometry.
    Feng Y; Zhu J; Chai H; He W; Huang L; Wang W
    Small; 2023 Nov; 19(45):e2303416. PubMed ID: 37438542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning empowered multi-stress level electromechanical phenotyping for high-dimensional single cell analysis.
    Liang M; Tang Q; Zhong J; Ai Y
    Biosens Bioelectron; 2023 Apr; 225():115086. PubMed ID: 36696849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiparameter Mechanical Phenotyping for Accurate Cell Identification Using High-Throughput Microfluidic Deformability Cytometry.
    Zhou Z; Guo K; Zhu S; Ni C; Ni Z; Xiang N
    Anal Chem; 2024 Jun; 96(25):10313-10321. PubMed ID: 38857194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous microfluidic 3D focusing enabling microflow cytometry for single-cell analysis.
    Yan S; Yuan D
    Talanta; 2021 Jan; 221():121401. PubMed ID: 33076055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Phase Imaging Flow Cytometry for Ultra-Large-Scale Single-Cell Biophysical Phenotyping.
    Lee KCM; Wang M; Cheah KSE; Chan GCF; So HKH; Wong KKY; Tsia KK
    Cytometry A; 2019 May; 95(5):510-520. PubMed ID: 31012276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.