These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 33661618)
41. Characterizing model uncertainties in the life cycle of lignocellulose-based ethanol fuels. Spatari S; MacLean HL Environ Sci Technol; 2010 Nov; 44(22):8773-80. PubMed ID: 20979408 [TBL] [Abstract][Full Text] [Related]
42. Economic and Environmental Barriers of CO Medrano-García JD; Charalambous MA; Guillén-Gosálbez G ACS Sustain Chem Eng; 2022 Sep; 10(36):11751-11759. PubMed ID: 36118362 [TBL] [Abstract][Full Text] [Related]
43. Comparing primary energy attributed to renewable energy with primary energy equivalent to determine carbon abatement in a national context. Gallachóir BP; O'Leary F; Bazilian M; Howley M; McKeogh EJ J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(5):923-37. PubMed ID: 16702067 [TBL] [Abstract][Full Text] [Related]
44. Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process. Bacenetti J; Negri M; Fiala M; González-García S Sci Total Environ; 2013 Oct; 463-464():541-51. PubMed ID: 23831800 [TBL] [Abstract][Full Text] [Related]
45. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels. McKechnie J; Colombo S; Chen J; Mabee W; MacLean HL Environ Sci Technol; 2011 Jan; 45(2):789-95. PubMed ID: 21142063 [TBL] [Abstract][Full Text] [Related]
46. Life cycle assessment of mobility options using wood based fuels--comparison of selected environmental effects and costs. Weinberg J; Kaltschmitt M Bioresour Technol; 2013 Dec; 150():420-8. PubMed ID: 24012134 [TBL] [Abstract][Full Text] [Related]
47. Comparison of flexible fuel vehicle and life-cycle fuel consumption and emissions of selected pollutants and greenhouse gases for ethanol 85 versus gasoline. Zhai H; Frey HC; Rouphail NM; Gonçalves GA; Farias TL J Air Waste Manag Assoc; 2009 Aug; 59(8):912-24. PubMed ID: 19728485 [TBL] [Abstract][Full Text] [Related]
48. Assessing feasible H Karekar SC; Seiple T; Ahring BK; Fuller C J Environ Manage; 2023 Nov; 345():118641. PubMed ID: 37549637 [TBL] [Abstract][Full Text] [Related]
49. The greenhouse gas cost of agricultural intensification with groundwater irrigation in a Midwest U.S. row cropping system. McGill BM; Hamilton SK; Millar N; Robertson GP Glob Chang Biol; 2018 Dec; 24(12):5948-5960. PubMed ID: 30295393 [TBL] [Abstract][Full Text] [Related]
50. Energy efficiency and greenhouse gas emission intensity of petroleum products at U.S. refineries. Elgowainy A; Han J; Cai H; Wang M; Forman GS; DiVita VB Environ Sci Technol; 2014 Jul; 48(13):7612-24. PubMed ID: 24869918 [TBL] [Abstract][Full Text] [Related]
51. Environmental and economic evaluation of bioenergy in Ontario, Canada. Zhang Y; Habibi S; MacLean HL J Air Waste Manag Assoc; 2007 Aug; 57(8):919-33. PubMed ID: 17824282 [TBL] [Abstract][Full Text] [Related]
52. A Life-Cycle Comparison of Alternative Automobile Fuels. MacLean HL; Lave LB; Lankey R; Joshi S J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-1779. PubMed ID: 28076232 [TBL] [Abstract][Full Text] [Related]
53. Green cheese: partial life cycle assessment of greenhouse gas emissions and energy intensity of integrated dairy production and bioenergy systems. Aguirre-Villegas HA; Passos-Fonseca TH; Reinemann DJ; Armentano LE; Wattiaux MA; Cabrera VE; Norman JM; Larson R J Dairy Sci; 2015 Mar; 98(3):1571-92. PubMed ID: 25597974 [TBL] [Abstract][Full Text] [Related]
54. Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy. Samaras C; Meisterling K Environ Sci Technol; 2008 May; 42(9):3170-6. PubMed ID: 18522090 [TBL] [Abstract][Full Text] [Related]
55. Evaluating the climate benefits of CO2-enhanced oil recovery using life cycle analysis. Cooney G; Littlefield J; Marriott J; Skone TJ Environ Sci Technol; 2015 Jun; 49(12):7491-500. PubMed ID: 25992466 [TBL] [Abstract][Full Text] [Related]
56. Well-to-wake analysis of switchgrass to jet fuel via a novel co-fermentation of sugars and CO Pamula ASP; Lampert DJ; Atiyeh HK Sci Total Environ; 2021 Aug; 782():146770. PubMed ID: 33839671 [TBL] [Abstract][Full Text] [Related]
57. Novel Strategies for the Production of Fuels, Lubricants, and Chemicals from Biomass. Shylesh S; Gokhale AA; Ho CR; Bell AT Acc Chem Res; 2017 Oct; 50(10):2589-2597. PubMed ID: 28930430 [TBL] [Abstract][Full Text] [Related]
58. The Renewable Fuel Standard May Limit Overall Greenhouse Gas Savings by Corn Stover-Based Cellulosic Biofuels in the U.S. Midwest: Effects of the Regulatory Approach on Projected Emissions. Kim S; Dale BE; Zhang X; Jones CD; Reddy AD; Izaurralde RC Environ Sci Technol; 2019 Mar; 53(5):2288-2294. PubMed ID: 30730719 [TBL] [Abstract][Full Text] [Related]
59. Set-asides can be better climate investment than corn ethanol. Piñeiro G; Jobbágy EG; Baker J; Murray BC; Jackson RB Ecol Appl; 2009 Mar; 19(2):277-82. PubMed ID: 19323189 [TBL] [Abstract][Full Text] [Related]
60. Emissions from U.S. waste collection vehicles. Maimoun MA; Reinhart DR; Gammoh FT; McCauley Bush P Waste Manag; 2013 May; 33(5):1079-89. PubMed ID: 23434127 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]